978 resultados para Peanut Cultivars
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
The biodiversity of rhizobium in soils of the São Francisco Valley is unknown and can be studied using cowpea as trap plants. The objective of this study was to verify the diversity of diazotrophic bacteria that nodulate cowpea in soils of the lower half of the São Francisco River Valley by morphological and genotypic characterization. Seven soil samples (A1, A2, A3, A4, C1, C2 and MC) were collected to capture bacteria associated to five cowpea cultivars (IPA 206, BRS Pujante, BRS Marataoã, Canapu Roxo, and Sempre Verde), in a 5x7 factorial design with three replications. Thirty days after plant emergence, the nodules were collected and the bacteria isolated and analyzed in relation to their growth characteristics in YMA medium. The 581 isolates were grouped in 49 morphologic groups. Of this total, 62.3 % formed colonies in up to three days, 33.4 % grew from the 6th day on, and 4.3 % began to grow 4 to 5 days after incubation. Regarding the formation of acids and alkalis, 63 % acidified the medium, 12 % made it alkaline and 25 % maintained the medium at neutral pH. The highest diversity was observed in the A3 sample and in isolates associated with the cultivars Canapu Roxo and BRS Pujante. Thirty-eight representative isolates were chosen for the genotypic characterization, clustered in four groups based on the restriction analysis of 16s rDNA. This grouping was strongly correlated with the sampling site; 13 rhizobium isolates had an electrophoretic profile distinct from the standard rhizobium strains used in this study.
Resumo:
High wheat yields require good N fertilization management. The objective of this study was to evaluate the effects of different N applications at sowing using Entec (N source with nitrification inhibitor) and urea (traditional N source) at covering, on four wheat cultivars. The experiment was conducted in a randomized block design in a factorial scheme, with four replications, at the Experimental Station of the Faculdade de Engenharia de Ilha Solteira - UNESP, on a dystrophic, epi-eutrophic alic Red Latosol with loamy texture, formerly under savannah vegetation. Four N rates (0, 60, 120, and 180 kg ha-1) were tested, applied at sowing in the case of Entec and top-dressed 40 days after plant emergence in the case of urea, and the four wheat cultivars E 21, E 22, E 42, and IAC 370. The yield of the wheat cultivars E 21 and E 42 was highest. Plant height and lodging index of cultivar E 22 were greatest, with consequently lowest grain yield. There was no significant difference between Entec (applied at sowing) and urea (top-dressed) in terms of grain yield and yield components. Nevertheless, urea resulted in a higher N leaf content, and Entec in a larger number of undeveloped spikelets. High nitrogen rates influenced the hectoliter mass negatively, affecting wheat grain quality. Grain yield increased under N rates of up to 82 kg ha-1 N, through Entec applied at sowing or top-dressed urea.
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP), Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin), root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.
Resumo:
Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.
Resumo:
The mobility of boron (B), a commonly deficient micronutrient in cotton, has been shown to be low in the plant phloem. Nevertheless, studies have indicated that cotton cultivars can respond differently to B application. A greenhouse experiment was conducted to compare B absorption and mobility in cotton cultivars grown in nutrient solution. Treatments consisted of three cotton cultivars (FMT 701, DP 604BG and FMX 993), and five B rates (0.0, 2.5, 5.0, 10.0, and 20.0 µmol L-1). Plant growth and development were monitored for four weeks from the appearance of the first square. The time of onset and severity of B deficiency symptoms varied among cotton cultivars. Initial B uptake of cv. DP 604BG was lower than of the other cultivars, but a greater amount of available B in the nutrient solution was required to prevent deficiency symptoms in this cultivar. Boron deficiency impairs cotton growth, with no differences among cultivars, regardless of the time of appearance and intensity of B deficiency symptoms.
Resumo:
Selostus: Perunalajikkeiden ponsiviljelyllä tuotettujen dihaploidien protoplastien sähköfuusio
Resumo:
The use of cultivars with a higher yield potential and the adoption of new technology have achieved high grain yields in common bean, which probably changed the demand for nutrients in this crop. However, there is almost no information about the periods of the cycle in which nutrients are most demanded at which quantities by the main cultivars. The objective of this study was to evaluate the macronutrient extraction and exportation by the common bean cultivars Pérola and IAC Alvorada, under different levels of NPK fertilization, on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block (split plot) design with four replications. The plots consisted of six treatments based on a 2 x 3 factorial model, represented by two cultivars and three NPK levels (PD0 - 'Pérola' without fertilization, PD1 - 'Pérola' with 50 % of recommended fertilization, PD2 - 'Pérola' with 100 % of recommended fertilization, AD0 - 'IAC Alvorada' without fertilization, AD1 - 'IAC Alvorada' with 50 % of recommended fertilization, and AD2 - 'IAC Alvorada' with 100 % of recommended fertilization) and subplots sampled seven times during the cycle. At higher levels of NPK fertilization, the grain yield and macronutrient extraction and exportation of both cultivars were higher, but without statistical differences. Macronutrient absorption was higher in the treatments with 100 % of recommended NPK fertilization (average amounts per hectare: 140 kg N, 16.5 kg P, 120 kg K, 69 kg Ca, 17.9 kg Mg, and 16.3 kg S). Regardless of the treatment, the demand for N, P, K, Ca, and Mg was highest from 45 to 55 days after emergence (DAE), i.e., in the R7 stage (pod formation), while the highest S absorption rates were concentrated between 55 and 65 DAE. More than 70 % of P, between 58 and 69 % of N, 40 and 52 % of S, 40 and 48 % of K, and 35 and 45 % of Mg absorbed during the cycle was exported with grains, whereas less than 15 % of Ca was exported.
Resumo:
Where the level of agricultural technology is higher, common bean cultivars with a higher yield potential possibly require greater amounts of micronutrients. In Brazil however, there is a lack of information about the micronutrient extraction and exportation by the main grown cultivars. The objective of this study was to evaluate micronutrient (B, Cu, Fe, Mn, and Zn) extraction and exportation by common bean cultivars Pérola and IAC Alvorada, under different levels of NPK fertilization, on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block (split plot) design with four replications. The plots consisted of six treatments based on a 2 x 3 factorial model, represented by two cultivars and three NPK levels (PD0 - 'Pérola' without fertilization, PD1 - 'Pérola' with 50 % of recommended fertilization, PD2 - 'Pérola' with 100 % of recommended fertilization, AD0 - 'IAC Alvorada' without fertilization, AD1 - 'IAC Alvorada' with 50 % of recommended fertilization, and AD2 - 'IAC Alvorada' with 100 % of recommended fertilization) and subplots sampled seven times during the cycle. Higher levels of NPK fertilization increased micronutrient extraction by both cultivars, and treatments with 100 % of recommended NPK fertilization extracted on average 167 g B, 58 g Cu, 1,405 g Fe, 1,213 g Mn and 211 g Zn per hectare. Regardless of the treatment, the highest demand period for B, Cu, Fe, Mn and Zn in both cultivars occurred at the R7 stage (pod formation), i.e. 42 to 55 days after emergence (DAE). The amount of B, Cu, Fe, Mn and Zn exported depended mainly on the level of NPK fertilization used, with values per hectare ranging from 38 to 90 g of B, 12 to 26 g of Cu, 222 to 568 g of Fe 234 to 467 g of Mn, and 40 to 96 g of Zn.
Resumo:
Selostus: Timoteilajikkeiden sadot, kasvuominaisuudet sekä typpi- ja kuitupitoisuus kahdella leveysasteella
Resumo:
Selostus: Kolmen uuden mesimarjalajikkeen kuvaukset ja lajikekuvausohjeet mesimarjalle ja jalomaaraimelle
Resumo:
Selostus: Suomessa viljeltävien perunalajikkeiden kestävyys A- ja Y-virusta vastaan
Resumo:
Document Type: Meeting Abstract