995 resultados para Pb containing ZrTiO4 (PLZT)
Resumo:
A series of new spin-labeled porphyrin containing isoindoline nitroxide moieties were synthesized and characterized as potential free radical fluorescence sensors. Fluorescence-suppression was observed in the free-base monoradical porphyrins, whilst the free-base biradical porphyrins exhibited highly suppressed fluorescence about three times greater than the monoradical porphyrins. The observed fluorescence-suppression was attributed to enhanced intersystem crossing resulting from electronexchange between the doublet nitroxide and the excited porphyrin fluorophore. Notably, fluorescencesuppression was not as strong in the related metalated porphyrins, possibly due to insufficient spin coupling between the nitroxide and the porphyrin. Continuous wave EPR spectroscopy of the diradical porphyrins in fluid solution suggests that the nitroxyl-nitroxyl interspin distance is long enough and tumbling is fast enough not to detect dipolar coupling.
Resumo:
A novel antioxidant for the potential treatment of ischaemia was designed by incorporating an isoindoline nitroxide into the framework of the free radical scavenger edaravone. 5-(3-Methyl-pyrazol-5-ol-1-yl)-1,1,3,3-tetramethylisoindolin-2-yloxyl 7 was prepared by N-arylation of 3-methyl-5-pyrazolone with 5-iodo-1,1,3,3-tetramethylisoindoline-2-yloxyl 8 in the presence of catalytic copper(I)iodide. Evaluation of 7, its methoxyamine derivative 10 and 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) against edaravone 1 in ischaemic rat atrial cardiomyocytes revealed significant decreases in cell death after prolonged ischaemia for each agent; however the protective effect of the novel antioxidant 7 (showing greater than 85% reduction in cell death at 100 μM) was significantly enhanced over that of edaravone 1 alone. Furthermore, the activity for 7 was found to be equal to or greater than the potent cardioprotective agent N6-cyclopentyladenosine (CPA). The methoxyamine adduct 10 and edaravone 1 showed no difference between the extent of reduction in cell death whilst CTMIO had only a modest protective effect.
Resumo:
The objective of this research is to determine the molecular structure of the mineral hinsdalite using vibrational spectroscopy. The mineral hinsdalite (Pb,Sr)Al3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites. The mineral is interesting because it contains two oxyanions, phosphate and sulphate, which is unusual. The formation of hinsdalite offers a mechanism for the removal of phosphate from the environment. The mineral has been characterised by Raman spectroscopy and infrared spectroscopy. The spectra are then related to the molecular structure of the mineral. Bands at various wavenumbers are assigned to the different vibrational modes of hinsdalite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. The Raman spectrum is characterised by an intense sharp band at 982 cm-1 with a component band at 997 cm-1 assigned to the ν1 (PO4)3- symmetric stretching modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Hinsdalite is characterised by disordered phosphate/sulphate tetrahedra and non-equivalent phosphate units are observed in the vibrational spectrum of hinsdalite.
Resumo:
This article describes investigations into the development of supramolecular systems capable of sensing anions through either displacement type assays or molecular motion. An electron deficient naphthalene diimide thread and electron rich isophthalamide naphthohydroquinone macrocycle was shown to form a coloured pseudorotaxane assembly. Investigations into the ability of such interpenetrated systems to sense anions colorimetrically were undertaken. Anion complexation to the isophthalamide group of the macrocycle causes displacement of the naphthodiimide thread resulting in the loss of colour. The enhanced mechanically bonded binding strength between the naphthodiimide axle and the naphthohydroquinone groups of the macrocycle wheel in the corresponding rotaxane structure however, was found to negate the anion induced displacement process.
Resumo:
A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the accumulation of arsenate. The formation of the tsumcorite minerals is an example of a series of minerals which accumulate arsenate. There are about twelve examples in this mineral group. Raman spectroscopy offers a method for the analysis of these minerals. The structure of selected tsumcorite minerals with arsenate and sulphate anions were analysed by Raman spectroscopy. Isomorphic substitution of sulphate for arsenate is observed for gartrellite and thometzekite. A comparison is made with the sulphate bearing mineral natrochalcite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO43- anion. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes.
Resumo:
A road bridge containing disused flatbed rail wagons as the primary deck superstructure was performance tested in a low volume, high axle load traffic road in Queensland, Australia; some key results are presented in this paper. A fully laden truck of total weight 28.88 % of the serviceability design load prescribed in the Australian bridge code was used; its wheel positions were accurately captured using a high speed camera and synchronised with the real‐time deflections and strains measured at the critical members of the flat rail wagons. The strains remained well below the yield and narrated the existence of composite action between the reinforced concrete slab pavement and the wagon deck. A three dimensional grillage model was developed and calibrated using the test data, which established the structural adequacy of the rail wagons and the positive contribution of the reinforced concrete slab pavement to resist high axle traffic loads on a single lane bridge in the low volume roads network.
Resumo:
Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.
Resumo:
Voltage drop and rise at network peak and off–peak periods along with voltage unbalance are the major power quality problems in low voltage distribution networks. Usually, the utilities try to use adjusting the transformer tap changers as a solution for the voltage drop. They also try to distribute the loads equally as a solution for network voltage unbalance problem. On the other hand, the ever increasing energy demand, along with the necessity of cost reduction and higher reliability requirements, are driving the modern power systems towards Distributed Generation (DG) units. This can be in the form of small rooftop photovoltaic cells (PV), Plug–in Electric Vehicles (PEVs) or Micro Grids (MGs). Rooftop PVs, typically with power levels ranging from 1–5 kW installed by the householders are gaining popularity due to their financial benefits for the householders. Also PEVs will be soon emerged in residential distribution networks which behave as a huge residential load when they are being charged while in their later generation, they are also expected to support the network as small DG units which transfer the energy stored in their battery into grid. Furthermore, the MG which is a cluster of loads and several DG units such as diesel generators, PVs, fuel cells and batteries are recently introduced to distribution networks. The voltage unbalance in the network can be increased due to the uncertainties in the random connection point of the PVs and PEVs to the network, their nominal capacity and time of operation. Therefore, it is of high interest to investigate the voltage unbalance in these networks as the result of MGs, PVs and PEVs integration to low voltage networks. In addition, the network might experience non–standard voltage drop due to high penetration of PEVs, being charged at night periods, or non–standard voltage rise due to high penetration of PVs and PEVs generating electricity back into the grid in the network off–peak periods. In this thesis, a voltage unbalance sensitivity analysis and stochastic evaluation is carried out for PVs installed by the householders versus their installation point, their nominal capacity and penetration level as different uncertainties. A similar analysis is carried out for PEVs penetration in the network working in two different modes: Grid to vehicle and Vehicle to grid. Furthermore, the conventional methods are discussed for improving the voltage unbalance within these networks. This is later continued by proposing new and efficient improvement methods for voltage profile improvement at network peak and off–peak periods and voltage unbalance reduction. In addition, voltage unbalance reduction is investigated for MGs and new improvement methods are proposed and applied for the MG test bed, planned to be established at Queensland University of Technology (QUT). MATLAB and PSCAD/EMTDC simulation softwares are used for verification of the analyses and the proposals.
Resumo:
To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.