625 resultados para Pavements, Asphalt


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oregon Department of Transportation, Salem

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asphalt mixtures exhibit primary, secondary, and tertiary stages in sequence during a rutting deterioration. Many field asphalt pavements are still in service even when the asphalt layer is in the tertiary stage, and rehabilitation is not performed until a significant amount of rutting accompanied by numerous macrocracks is observed. The objective of this study was to provide a mechanistic method to model the anisotropic cracking of the asphalt mixtures in compression during the tertiary stage of rutting. Laboratory tests including nondestructive and destructive tests were performed to obtain the viscoelastic and viscofracture properties of the asphalt mixtures. Each of the measured axial and radial total strains in the destructive tests were decomposed into elastic, plastic, viscoelastic, viscoplastic, and viscofracture strains using the pseudostrain method in an extended elastic-viscoelastic correspondence principle. The viscofracture strains are caused by the crack growth, which is primarily signaled by the increase of phase angle in the tertiary flow. The viscofracture properties are characterized using the anisotropic damage densities (i.e., the ratio of the lost area caused by cracks to the original total area in orthogonal directions). Using the decomposed axial and radial viscofracture strains, the axial and radial damage densities were determined by using a dissipated pseudostrain energy balance principle and a geometric analysis of the cracks, respectively. Anisotropic pseudo J-integral Paris' laws in terms of damage densities were used to characterize the evolution of the cracks in compression. The material constants in the Paris' law are determined and found to be highly correlated. These tests, analysis, and modeling were performed on different asphalt mixtures with two binders, two air void contents, and three aging periods. Consistent results were obtained; for instance, a stiffer asphalt mixture is demonstrated to have a higher modulus, a lower phase angle, a greater flow number, and a larger n1 value (exponent of Paris' law). The calculation of the orientation of cracks demonstrates that the asphalt mixture with 4% air voids has a brittle fracture and a splitting crack mode, whereas the asphalt mixture with 7% air voids tends to have a ductile fracture and a diagonal sliding crack mode. Cracks of the asphalt mixtures in compression are inclined to propagate along the direction of the external compressive load. © 2014 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to fundamentally characterize the laboratory performance of traditional hot mix asphalt (HMA) mixtures incorporating high RAP content and waste tire crumb rubber through their fundamental engineering properties. The nominal maximum aggregates size was chosen for this research was 12mm (considering the limitation of aggregate size for surface layer) and both coarse and fine aggregates are commonly used in Italy that were examined and analyzed in this study. On the other hand, the RAP plays an important role in reducing production costs and enhancing the environmentally sustainable pavements instead of using virgin materials in HMA. Particularly, this study has aimed to use 30% of RAP content (25% fine aggregate RAP and 5% coarse aggregate RAP) and 1% of CR additives by the total weight of aggregates for mix design. The mixture of aggregates, RAP and CR were blended with different amount of unmodified binder through dry processes. Generally, the main purposes of this study were investigating on capability of using RAP and CR in dense graded HMA and comparing the performance of rejuvenator in RAP with CR. In addition, based on the engineering analyses during the study, we were able compare the fundamental Indirect Tensile Strength (ITS) value of dense graded HMA and also mechanical characteristics in terms of Indirect Tensile Stiffness Modulus (ITSM). In order to get an extended comparable data, four groups of different mixtures such as conventional mixture with only virgin aggregates (DV), mixture with RAP (DR), mixture with RAP and rejuvenator (DRR), and mixture with RAP, rejuvenator, CR (DRRCr) were investigated in this research experimentally. Finally, the results of those tests indicated that the mixtures with RAP and CR had the high stiffness and less thermal sensitivity, while the mixture with virgin aggregates only had very low values in comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal and fatigue cracking are the major pavement distresses that contribute to a drastic reduction of the pavement’s service life and performance in Ontario. Chemical oxidation and hardening of asphalt binders deteriorates its physical properties since physical properties of asphalts depend on its chemical composition. This thesis is aimed to establish a relationship between physical and chemical properties of asphalt binders. A secondary objective is to show the strong correlation between CTOD and temperature. All recovered and straight Ministry of Transportation of Ontario (MTO) samples were investigated using conventional Superpave® test method dynamic shear rheometer (DSR) as well as improved MTO test methods such as extended bending beam rheometer (eBBR) and double-edge-notched tension (DENT) test. DENT test was conducted for all Ontario contract samples at three different temperatures based on their performance grade after three hours of thermal conditioning and compared the results in terms of essential work of fracture, plastic work of fracture and CTOD at different temperatures. Good correlation exists between CTOD and temperature according to the DENT data. X-ray fluorescence (XRF) analysis was conducted to detect the presence of heavy metals such as zinc and molybdenum believed to have originated from waste engine oil. Fourier transform infra-red spectroscopy (FTIR) was performed to determine the abundance of functional groups such as carbonyl, sulfoxides, polyisobutylene, etc. XRF and FTIR analysis confirmed that most of the samples contain waste engine oil and/or oxidized residues, which is believed to be a root cause of premature pavement failures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanics-based analysis framework predicts top-down fatigue cracking initiation time in asphalt concrete pavements by utilising fracture mechanics and mixture morphology-based property. To reduce the level of complexity involved, traffic data were characterised and incorporated into the framework using the equivalent single axle load (ESAL) approach. There is a concern that this kind of simplistic traffic characterisation might result in erroneous performance predictions and pavement structural designs. This paper integrates axle load spectra and other traffic characterisation parameters into the mechanics-based analysis framework and studies the impact these traffic characterisation parameters have on predicted fatigue cracking performance. The traffic characterisation inputs studied are traffic growth rate, axle load spectra, lateral wheel wander and volume adjustment factors. For this purpose, a traffic integration approach which incorporates Monte Carlo simulation and representative traffic characterisation inputs was developed. The significance of these traffic characterisation parameters was established by evaluating a number of field pavement sections. It is evident from the results that all the traffic characterisation parameters except truck wheel wander have been observed to have significant influence on predicted top-down fatigue cracking performance.