844 resultados para Pathology avian
Resumo:
A novel Ca^(2+)-binding protein with Mr of 23 K (designated p23) has been identified in avian erythrocytes and thrombocytes. p23 localizes to the marginal bands (MBs), centrosomes and discrete sites around the nuclear membrane in mature avian erythrocytes. p23 appears to bind Ca^(2+) directly and its interaction with subcellular organelles seems to be modulated by intracellular [Ca^(2+)]. However, its unique protein sequence lacks any known Ca^(2+)-binding motif. Developmental analysis reveals that p23 association to its target structures occurs only at very late stages of bone marrow definitive erythropoeisis. In primitive erythroid cells, p23 distributes diffusely in the cytoplasm and lacks any distinct localization. It is postulated that p23 association to subcellular structures may be induced in part by decreased intracellular [Ca^(2+)]. In vitro and in vivo experiments indicate that p23 does not appear to act as a classical microtubule-associated protein (MAP) but p23 homologues appear to be expressed in MB-containing cells of a variety of species from different vertebrate classes. It has been hypothesized that p23 may play a regulatory role in MB stabilization in a Ca^(2+)-dependent manner.
Binucleated (bnbn) turkey erythrocytes were found to express a truncated p23 variant (designated p21) with identical subcellular localization as p23 except immunostaining reveals the presence of multi-centrosomes in bnbn cells. The p21 sequence has a 62 amino acid deletion at the C-terminus and must therefore have an additional ~40 amino acids at the N-terminus. In addition, p21 seems to have lost the ability to bind Ca^(2+) and its supramolecular interactions are not modulated by intracellular [Ca^(2+)]. These apparent differences between p23 and p21 raised the possibility that the p23/p21 allelism could be the Bn/bn genotype. However, genetic analysis suggested that p23/p21 allelism had no absolute correlation with the Bn/bn genotype.
Resumo:
In Britain, many birds eat fish in fresh waters but only three species, cormorant, red-breasted merganser and goosander, are commonly perceived to present serious problems for freshwater fisheries. Complaints are mainly that cormorants eat large fish and that all three bird species eat so many juvenile fish, that there are subsequently fewer fish to be harvested or angled, but also that persistent predation by birds changes fish behaviour so that they are less 'catchable'. To this end, this report reviews existing information on the current status, foraging ecology, and population biology of the three bird species as background to their potential impact on fisheries. Discusses fish population dynamics within the context of predation effects. Reviews existing experimental evidence for impacts on fish populations and fisheries; and describes current legislation, discusses potential criteria for serious damage to a fishery, and suggests ways forward for NRA policy and research.
Resumo:
Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database.
Resumo:
Gill pathology of juveniles of two Indian major carps Labeo rohita and Cirrhinus mrigala were studied for a culture period of three months in a private and a government fish farm pond. Under histopathological observations, only protozoan parasite, Myxobolus sp., was recorded as cyst. These myxosporidian cysts were high in the gills of L. rohita of the government farm pond followed by C. mrigala of the private farm pond. Hypertrophic gill lamellae (primary and secondary) with loss of secondary lamellae were evidenced in C. mrigala of privately operated pond.
Resumo:
An outbreak of saprolegniasis in Catla catla in composite carp culture ponds were recorded during winter season. The typical cotton wool growths were observed on whole body surfaces of catla along with sporadic mortality. The fungal invasion was only restricted to skin and no fungal elements were visible in any internal organs after periodic acid schiff staining. On histology, periportal accumulation of mononuclear cells in liver, presence of myxosporidean cysts in antieror kidney, eosinophilic granular cells reaction in submucosa of stomach and intestine, dilated and engorged blood vessels of brain along with sloughing of epidermis and hyperplasia at gill lamellar base were pronounced changes. The possible role of release of Saprolegnia toxin in producing internal organs pathology has been discussed.
Resumo:
The chicken is the most extensively studied species in birds and thus constitutes an ideal reference for comparative genomics in birds. Comparative cytogenetic studies indicate that the chicken has retained many chromosome characters of the ancestral avia
Resumo:
For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain o
Resumo:
The evolution of flight is the most important feature of birds, and this ability has helped them become one of the most successful groups of vertebrates. However, some species have independently lost their ability to fly. The degeneration of flight abilit
Resumo:
Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondar
Resumo:
Cryopreservation of domestic animal sperm has been widely used for artificial insemination (AI), and egg yolk is one of the most commonly used cryoprotectants during the freezing-thawing process. The objectives of this study were to compare the effectiven
Resumo:
The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein I gene, KIAA1259, MGC68696, G6pe-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel method is reported for the detection of avian influenza virus subtype H5 using a biosensor based on high spatial resolution imaging ellipsometry (IE). Monoclonal antibodies specific to H5 hemagglutinin protein were immobilized on silicon wafers and used to capture virus particles. Resultant changes on the surface of the wafers were visualized directly in gray-scale on an imaging ellipsometry image. This preliminary study has shown that the assay is rapid and specific for the identification of avian influenza virus subtype H5. Compared with lateral-flow immunoassays, this biosensor not only has better sensitivity, but can also simultaneously perform multiplexed tests. These results suggest that this biosensor might be a valuable diagnostic toot for avian influenza virus detection. (c) 2009 Elsevier B.V. All rights reserved.