945 resultados para Pathological Speech Signal Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study is the analysis of the dynamical properties of financial data series from 32 worldwide stock market indices during the period 2000–2009 at a daily time horizon. Stock market indices are examples of complex interacting systems for which a huge amount of data exists. The methods and algorithms that have been explored for the description of physical phenomena become an effective background in the analysis of economical data. In this perspective are applied the classical concepts of signal analysis, Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indices. We analyze the Dow Jones Industrial Average ( ∧ DJI) and the NASDAQ Composite ( ∧ IXIC) indexes at a daily time horizon. The methods and algorithms that have been explored for description of physical phenomena become an effective background, and even inspiration, for very productive methods used in the analysis of economical data. We start by applying the classical concepts of signal analysis, Fourier transform, and methods of fractional calculus. In a second phase we adopt a pseudo phase plane approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computational Intelligence in Medicine Healthcare, CIMED 2005, Costa da Caparica, June 29 - July 1, 2005

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation and management of renal cysts Renal cystic diseases are a heterogeneous group of conditions including heritable, developmental, and acquired disorders. They are united by the presence of microscopic or giant fluid-filled cavities and affect both children and adults. The definitive diagnosis of many of the renal cystic diseases requires clinical, radiological, pathological, and genetic analysis. A precise diagnosis is essential for prognosis, treatment, and future genetic counselling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new technique for audio signal comparison based on tonal subsequence alignment and its application to detect cover versions (i.e., different performances of the same underlying musical piece). Cover song identification is a task whose popularity has increased in the Music Information Retrieval (MIR) community along in the past, as it provides a direct and objective way to evaluate music similarity algorithms.This article first presents a series of experiments carried outwith two state-of-the-art methods for cover song identification.We have studied several components of these (such as chroma resolution and similarity, transposition, beat tracking or Dynamic Time Warping constraints), in order to discover which characteristics would be desirable for a competitive cover song identifier. After analyzing many cross-validated results, the importance of these characteristics is discussed, and the best-performing ones are finally applied to the newly proposed method. Multipleevaluations of this one confirm a large increase in identificationaccuracy when comparing it with alternative state-of-the-artapproaches.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.