917 resultados para Pastas de cimento
Resumo:
Cimentos ósseos são materiais desenvolvidos há aproximadamente uma década para aplicações biomédicas. Um cimento deste tipo pode ser preparado misturando um sal de fosfato de cálcio com uma solução aquosa para que se forme uma pasta que possa reagir à temperatura corporal dando lugar a um precipitado que contenha hidroxiapatita [Ca10(PO4)6(OH)2]. A similaridade química e morfológica entre este biomaterial e a parte mineral dos tecidos ósseos permite a osteocondução, sendo o cimento substituído por tecido ósseo novo com o tempo e com a vantagem de não desencadear rejeição. Estes cimentos são usados principalmente para as operações de preenchimento ósseo, que requer operações cirúrgicas extremamente invasivas. O desafio atual é colocar este biomaterial no local de enxerto pelo método menos agressivo possível. A inovação consiste em formular composição de cimento ósseo injetável pela incorporação de aditivos. No entanto, propriedades como reduzido tempo de cura, limitada dissolução em meio líquido e resistência mecânica adequada ao local do enxerto devem ser preservadas. Neste estudo, foram abordados oito diferentes aditivos que foram incorporados ao fosfato tricálcico [Ca3(PO4)2] sintetizado, juntamente com a solução do acelerador de cura (2,5%massa de Na2HPO4 dissolvido em água destilada): CMC (carboximetilcelulose), polímero de AGAR (polissacarídeo de algas vermelhas), alginato de sódio, quitosana (fibra natural derivada da quitina), pirofosfato de sódio, lignosulfonato de sódio (polissacarídeo de algas marrons), glicerina e ácido láctico nas concentrações 0,4%; 0,8%; 1,6%; 3,2%; 6,4% em massa. Os resultados demonstraram que foi possível obter composições de cimento de fosfato de cálcio injetáveis para uso biomédico. Constatou-se uma relação de proporcionalidade direta entre a injetabilidade do cimento e tempo de injeção, sendo a injetabilidade dependente do comportamento reológico das pastas. Todas formulações testadas seguiram a mesma tendência de redução da resistência mecânica à compressão e aumento da porosidade com o aumento da quantidade de aditivo incorporado. Verificou-se que as formulações com 1,6% de carboxi-metil-celulose, 1,6% de AGAR e 0,8% de alginato de sódio, permitiram a obtenção de uma viscosidade suficiente para uma boa homogeneização e injeção, apresentando ao final da cura resistência mecânica à compressão semelhante ao do osso esponjoso.
Resumo:
Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications
Resumo:
The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic
Resumo:
The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing
Resumo:
Improving the adherence between oilwell metallic casing and cement sheath potentially decrease the number of corrective actions present/y necessary for Northeastern wells submitted to steam injection. In addition to the direct costs involved in the corrective operations, the economic impact of the failure of the primary cementing aIso includes the loss in the production of the well. The adherence between casing and cement is current/y evaluated by a simple shear tests non standardized by the American Petroleum Institute (API). Therefore, the objective of the present is to propose and evaluate a standardized method to assess the adherence of oilwell metallic casing to cement sheath. To that end, a section of a cemented oilwell was simulated and used to test the effect of different parameters on the shear stress of the system. Surface roughness and different cement compositions submitted or not to thermal cycling were evaluated. The results revealed that the test geometry and parameters proposed yielded different values for the shear stress of the system, corresponding to different adherent conditions between metallic casing and cement sheath
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
A presença de aditivos incorporadores de ar (AIA) em suspensões cimentícias torna esses materiais sensíveis às etapas de processamento e às condições ambientais de preparo das composições. Diversos estudos têm sido reportados em literatura avaliando o efeito de incorporadores de ar nas propriedades de materiais cimentícios, sobretudo no estado endurecido. Porém o efeito da temperatura na incorporação de ar e nas propriedades reológicas dessas composições tem sido menos investigado, sendo este o objetivo do presente trabalho. Para tanto, foram avaliadas as características de pastas cimentícias, compostas por cimentos CPIIF ou CPIIE e dois tipos de AIA, em função da variação da temperatura. O conceito de viscosidade cinemática foi adotado na análise dos resultados para compensar diferenças de inércia das pastas com densidades distintas. Os resultados mostraram que o tipo de cimento, a presença do aditivo e a temperatura influenciaram significativamente na incorporação de ar e nas propriedades reológicas.
Resumo:
Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications
Resumo:
The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic
Resumo:
The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing
Resumo:
O presente estudo objetivou testar experimentalmente a existência da possível correlação entre a penetração de cimento nos túbulos dentinários e a qualidade do selamento. Foram utilizados 60 incisivos centrais superiores humanos que formaram um único grupo experimental. Após a eliminação das porções coronárias, as raízes foram padronizadas em 13 mm de comprimento. A instrumentação dos canais foi realizada no sentido coroa-ápice, e o comprimento de trabalho estabelecido a 1 mm aquém do forame apical. Como solução irrigadora foi empregado o NaOCl a 5,25% e ao final, EDTA a 17%. Em seguida, todos os canais foram obturados com guta-percha e cimento AH Plus marcado com um corante fluorescente. Para determinar a qualidade do selamento das obturações endodônticas, as amostras foram submetidas ao modelo de infiltração de glicose sob pressão. As raízes foram montadas em um dispositivo de dupla-câmara selada para permitir a infiltração da glicose. Como controle negativo foram utilizados 4 dentes hígidos, e como controle positivo, 2 dentes instrumentados porém, não obturados. Foram utilizados 0,75 mL de solução de glicose a 1 mol/L na câmara superior e 0,75 mL de água deionizada na câmara inferior. Os dispositivos foram conectados a um sistema de distribuição de pressão desenvolvido com o objetivo de permitir a infiltração de 32 amostras em uma mesma etapa. A solução de glicose foi forçada apicalmente sob uma pressão de 15 psi durante 1 hora. Uma alíquota de 50 L foi coletada da câmara inferior para quantificar a glicose infiltrada. A concentração de glicose foi determinada através de um método enzimático com o auxílio do Kit Glucose HK e de um espectrofotômetro em um comprimento de onda de 340 nm. Na sequência, as amostras foram desacopladas dos corpos de prova, embutidas em resina epóxi e cortadas em 3 secções transversais. Uma sequência de preparação metalográfica padrão foi realizada para permitir a observação da penetração de cimento nos túbulos dentinários por meio de microscopia confocal e óptica. Os dados obtidos nos 2 experimentos foram cruzados pelo teste de correlação de Spearman, o qual revelou a inexistência de qualquer possibilidade de correlação (r = 0,12). Com base nesses resultados, o presente trabalho concluiu que, dentro das condições experimentais usadas, a quantidade de cimento presente dentro dos túbulos dentinários não teve relação com a qualidade do selamento produzido.