826 resultados para Particles aggregation
Resumo:
The metabolic syndrome (MetS) phenotype is typically characterized by visceral obesity, insulin resistance, atherogenic dyslipidemia involving hypertriglyceridemia and subnormal levels of high density lipoprotein-cholesterol (HDL-C), oxidative stress and elevated cardiovascular risk. The potent antioxidative activity of small HDL3 is defective in MetS [Hansel B, et al. J Clin Endocrinol Metab 2004;89:4963-71]. We evaluated the functional capacity of small HDL3 particles from MetS subjects to protect endothelial cells from apoptosis induced by mildly oxidized low-density lipoprotein (oxLDL). MetS subjects presented an insulin-resistant obese phenotype, with hypertriglyceridemia, elevated apolipoprotein B and insulin levels, but subnormal HDL-C concentrations and chronic low grade inflammation (threefold elevation of C-reactive protein). When human microvascular endothelial cells (HMEC-1) were incubated with oxLDL (200 jig apolipoprotein B/ml) in the presence or absence of control HDL subfiractions (25 mu g protein/ml), small, dense HDL3b and 3c significantly inhibited cellular annexin V binding and intracellular generation of reactive oxygen species. The potent anti-apoptotic activity of small HDL3c particles was reduced (-35%; p < 0.05) in MetS subjects (n = 16) relative to normolipidemic controls (n = 7). The attenuated anti-apoptotic activity of HDL3c correlated with abdominal obesity, atherogenic dyslipidemia and systemic oxidative stress (p < 0.05), and was intimately associated with altered physicochemical properties of apolipoprotein A-I (apoA-I-poor HDL3c, involving core cholesteryl ester depletion and triglyceride enrichment. We conclude that in MetS, apoA-I-poor, small, dense HDL3c exert defective protection of endothelial cells from oxLDL-induced apoptosis, potentially reflecting functional anomalies intimately associated with abnormal neutral lipid core content. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
An improved method for counting virus and virus like particles by electron microscopy (EM) was developed. The procedure involves the determination of the absolute concentration of pure or semi-pure particles once deposited evenly on EM grids using either centrifugation or antibody capture techniques. The counting of particles was done with a Microfiche unit which enlarged approximately 50 x the image of particles on a developed negative film which had been taken at a relatively low magnification (2500 x) by EM. Initially, latex particles of a known concentration were counted using this approach, to prove the accuracy of the technique. The latex particles were deposited evenly on an EM grid using centrifugation (Modified Beckmen EM-90 Airfuge technique). Subsequently, recombinant Bluetongue virus (BTV) core-like particles (CLPs) captured by a Monoclonal antibody using a hovel sample loading method were counted by the Microfiche unit method and by a direct EM method. Comparison of the simplified counting method developed with a conventional method, showed good agreement. The method is simple, accurate, rapid, and reproducible when used with either pure particles or with particles from crude cell culture extracts.
Resumo:
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22] X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small a-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow a migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.
Resumo:
Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wildtype (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, PrnP(0/0)raS/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation. (C) 2009 UICC
Resumo:
Soil structure is generally defined as the arrangement, orientation, and organization of the primary particles of sand, silt, and clay into compound aggregates, which exhibit properties that are unequal to the properties of a mass of nonaggregated material with a similar texture.6 Therefore the nature of soil structure is that it conveys specific properties to the soil and any alteration, i.e., breakdown or structural development, to the soil structural units will affect the physical properties of the soil. The aggregation and organization of the soil particles tend to form a hierarchical order4, 5 where the lower orders tend to have higher densities and greater internal strength than the higher orders. A schematic diagram of the hierarchical nature of soil structural elements in a clay soil is given in Fig. 1.4 Clay particles tend to form domains (packets of parallel clay sheets, generally consisting of 5-7 sheets), in turn several domains form clusters, followed by several orders of clusters, micro- and macroaggregates. The hierarchical nature implies that the destruction of a lower order will result in the destruction of all higher hierarchical orders. An example is the dispersion of sodic clay domains which results in the destruction of all higher orders, resulting in a dense soil with low hydraulic conductivity. Hence the clay domains are the fundamental building blocks of the soil and its integrity may determine the soil's physical properties and behavior.
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 mu g/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Resumo:
Analysis of fuel emissions is crucial for understanding the pathogenesis of mortality because of air pollution. The objective of this study is to assess cardiovascular and inflammatory toxicity of diesel and biodiesel particles. Mice were exposed to fuels for 1 h. Heart rate (HR), heart rate variability, and blood pressure were obtained before exposure, as well as 30 and 60 min after exposure. After 24 h, bronchoalveolar lavage, blood, and bone marrow were collected to evaluate inflammation. B100 decreased the following emission parameters: mass, black carbon, metals, CO, polycyclic aromatic hydrocarbons, and volatile organic compounds compared with B50 and diesel; root mean square of successive differences in the heart beat interval increased with diesel (p < 0.05) compared with control; low frequency increased with diesel (p < 0.01) and B100 (p < 0.05) compared with control; HR increased with B100 (p < 0.05) compared with control; mean corpuscular volume increased with B100 compared with diesel (p < 0.01), B50, and control (p < 0.001); mean corpuscular hemoglobin concentration decreased with B100 compared with B50 (p < 0.001) and control (p < 0.05); leucocytes increased with B50 compared with diesel (p < 0.05); platelets increased with B100 compared with diesel and control (p < 0.05); reticulocytes increased with B50 compared with diesel, control (p < 0.01), and B100 (p < 0.05); metamyelocytes increased with B50 and B100 compared with diesel (p < 0.05); neutrophils increased with diesel and B50 compared with control (p < 0.05); and macrophages increased with diesel (p < 0.01), B50, and B100 (p < 0.05) compared with control. Biodiesel was more toxic than diesel because it promoted cardiovascular alterations as well as pulmonary and systemic inflammation.
Resumo:
Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.
Resumo:
The mechanisms of the systemic response associated with talc-induced pleurodesis are poorly understood. The aim of this study was to assess the acute inflammatory response and migration of talc of small. size particles injected in the pleural space. Rabbits were injected intrapleurally with talc solution containing small. or mixed particles and blood and pleural fluid samples were collected after 6, 24 or 48 h and assayed for leukocytes, neutrophils, lactate dehydrogenase, IL-8, VEGF, and TGF-beta. The lungs, spleen, liver and kidneys were assessed to study deposit of talc particles. Both types of talc produced an acute serum inflammatory response, more pronounced in the small particles group. Pleural fluid IL-8 and VEGF levels were higher in the small particle talc group. Correlation between pleural VEFG and TGF-beta levels was observed for both groups. Although talc particles were demonstrated in the organs of both groups, they were more pronounced in the small talc group. In conclusion, intrapleural injection of talc of small size particles produced a more pronounced acute systemic response and a greater deposition in organs than talc of mixed particles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Rationale- Chronic exposure to air pollution has been associated with adverse effects on children`s lung growth. Objectives: We analyzed the effects of chronic exposure to urban levels of particulate matter (PM) on selected phases of mouse lung development. Methods: The exposure occurred in two open-top chambers (filtered and nonfiltered) placed 20 m from a street with heavy traffic in Sao Paulo, 24 hours/day for 8 months. There was a significant reduction of the levels of PM(2.5) inside the filtered chamber (filtered = 2.9 +/- 3.0 mu g/m(3), nonfiltered = 16.8 +/- 8.3 mu g/m(3); P = 0.001). At this exposure site, vehicular sources are the major components of PM(2.5) (PM <= 2.5 mu m). Exposure of the parental generation in the two chambers occurred from the 10th to the 120th days of life. After mating and birth of offspring, a crossover of mothers and pups occurred within the chambers, resulting in four groups of pups: nonexposed, prenatal, postnatal, and pre+postnatal. Offspring were killed at the age of 15 (n = 42) and 90 (n = 35) days; lungs were analyzed by morphometry for surface to volume ratio (as an estimator of alveolization). Pressure-volume curves were performed in the older groups, using a 20-ml plethysmograph. Measurements and Main Results: Mice exposed to PM(2.5) pre+postnatally presented a smaller surface to volume ratio when compared with nonexposed animals (P = 0.036). The pre+postnatal group presented reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure (P = 0.001). There were no differences among prenatal and postnatal exposure and nonexposed animals. Conclusions: Our data provide anatomical and functional support to the concept that chronic exposure to urban PM affects lung growth.
Resumo:
Ambient particles have been consistently associated with adverse health effects, yielding mainly high cardiorespiratory morbidity and mortality. Diesel engines represent a major source of particles in the urban scenario. We aimed to modify the composition of diesel particles, by means of different extraction procedures, to relate changes in chemical profile to corresponding indicators of respiratory toxicity. Male BALB/c mice were nasally instilled with saline, or with diesel particles, treated or not, and assigned to five groups: saline ( SHAM), intact diesel particles (DEP), and diesel particles previously treated with methanol ( METH), hexane ( HEX), or nitric acid (NA). Elemental composition and organic compounds were analyzed. Twenty-four hours after nasal instillation, respiratory parameters were measured and lung tissue was collected for histological analysis. Static elastance was significantly increased in groups DEP and MET in relation to the other groups. HEX and NA were different from DEP but not significantly different from SHAM and METH groups. The difference between dynamic and static elastance was increased in DEP, METH, and NA treatments; HEX was not statistically different from SHAM. DEP and METH groups presented significantly increased upper airways resistance, while DEP, METH, and NA showed higher peripheral airways resistance values. All groups had a higher total resistance than SHAM. DEP, METH, and NA showed significant increased infiltration of polymorphonuclear cells. In conclusion, diesel particles treated with hexane ( HEX) resulted in a respiratory-system profile very similar to that in SHAM group, indicating that hexane treatment attenuates pulmonary inflammation elicited by diesel particles.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
Resources can be aggregated both within and between patches. In this article, we examine how aggregation at these different scales influences the behavior and performance of foragers. We developed an optimal foraging model of the foraging behavior of the parasitoid wasp Cotesia rubecula parasitizing the larvae of the cabbage butterfly Pieris rapae. The optimal behavior was found using stochastic dynamic programming. The most interesting and novel result is that the effect of resource aggregation within and between patches depends on the degree of aggregation both within and between patches as well as on the local host density in the occupied patch, but lifetime reproductive success depends only on aggregation within patches. Our findings have profound implications for the way in which we measure heterogeneity at different scales and model the response of organisms to spatial heterogeneity.