1000 resultados para Particle-hole asymmetry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples from the upper portion of a cyclic pelagic carbonate sediment sequence in Deep-Sea Drilling Project (DSDP) hole 503B (4.0°N, 95.6°W) are the first group to be analyzed for paleoceanographic and paleoclimatic proxy-indicators of ice volume, deep ocean and surface water circulation, and atmospheric circulation in order to resolve the complex origin of the cyclicity. Temporal resolution is taken from the delta18O time scale, most other parameters are calculated in terms of their mass flux to the seafloor. CaCO3 percent in the sediments fluctuates in the well-known Pacific pattern and is higher during glacial times. The fluxes of opal and organic carbon have patterns similar to each other and show a variability of a factor of 2.5 to 4. The longer organic carbon record shows flux maxima during both glacial and interglacial times. The accumulation patterns of both opal and organic carbon suggest that the variability in surface water productivity and/or seafloor preservation of those materials is not simply correlated to glacial or interglacial periods. Eolian dust fluxes are greater during interglacial periods by factors of 2 to 5, indicating that eolian source regions in central and northern South America were more arid during interglacial periods. The record of eolian grain size provides a semiquantitative estimation of the intensity of the transporting winds. The eolian data suggest more intense atmospheric circulation during interglacial periods, opposite to the anticipated results. We interpret this observation as recording the southerly shift of the intertropical convergence zone to the latitude of hole 503B during glaciations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed 580 integrated scrape-samples from HPC Site 480 for organic and carbonate carbon. Once precise dating is available, these will provide a high-resolution framework for understanding late Quaternary Oceanographic and climatic fluctuations in this region. Organic carbon ranges mostly within a narrow band of 1.8 to 3.5% C. Calcium carbonate varies from undetectable to over 20%, with an average of only about 5%. Source of carbonate are mostly benthic and planktonic foraminifers, although some sections are dominated by diagenetic carbonate, shelly hash, or nannofossils. Detrital sources are low in carbonate. We divided the sequence into 17 calcium carbonate (CC) zones to separate pulses, low and median values. The CC-Zones show various second-order patterns of cyclicity, asymmetry, and events. Laminated zones have lowest uniform values, but a perfect correlation between carbonate content and homogeneous or laminated facies was not found. Maximum values tend to be located near the transition of these two sediment types, showing that accumulation of carbonate is favored during times of breakdown of stable Oceanographic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliciclastic sedimentation at Ocean Drilling Program Site 1017 on the southern slope of the Santa Lucia Bank, central California margin, responded closely to oceanographic and climatic change over the past ~130 ka. Variation in mean grain-size and sediment sorting within the ~25-m-thick succession from Hole 1017E show Milankovitch-band to submillenial-scale variation. Mean grain size of the "sortable silt" fraction (10-63 µm) ranges from 17.6 to 33.9 µm (average 24.8 µm) and is inversely correlated with the degree of sorting. Much of the sediment has a bimodal or trimodal grain-size distribution that is composed of distinct fine silt, coarse silt to fine sand, and clay-size components. The position of the mode and the sorting of each component changes through the succession, but the primary variation is in the presence or abundance of the coarse silt fraction that controls the overall mean grain size and sorting of the sample. The occurrence of the best-sorted, finest grained sediment at high stands of sea level (Holocene, marine isotope Substages 5c and 5e) reflect the linkage between global climate and the sedimentary record at Site 1017 and suggest that the efficiency of off-shelf transport is a key control of sedimentation on the Santa Lucia Slope. It is not clear what proportion of the variation in grain size and sorting may also be caused by variations in bottom current strength and in situ hydrodynamic sorting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We document the waxing and waning of a "proto-warm pool" in the western equatorial Pacific (WEP) based on a study of multi-species planktic foraminiferal isotope ratios and census data spanning the 13.2-5.8 Ma interval at ODP Site 806. We hypothesize that the presence or absence of a proto-warm pool in the WEP, caused by the progressive tectonic constriction of the Indonesian Seaway and modulated by sea level fluctuations, created El Niño/La Niña-like alternations of hydrographic conditions across the equatorial Pacific during the late Miocene. This hypothesis is supported by the general antithetical relationship observed between carbonate productivity and preservation in the western and eastern equatorial Pacific, which we propose is caused by these alternating ocean-climate states. Warming of thermocline and surface waters, as well as a major change in planktic foraminferal assemblages record a two-step phase of proto-warm pool development ~11.6-10 Ma, which coincides with Miocene isotope events Mi5 and Mi6, and sea-level low stands. We suggest that these changes in the biota and structure of the upper water column in the WEP mark the initiation of a more modern equatorial current system, including the development of the Equatorial Undercurrent (EUC), as La Niña-like conditions became established across the tropical Pacific. This situation sustained carbonate and silica productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening after ~10 Ma may have contributed to the nadir of a similar "carbonate crash" in the EEP. Cooling of the thermocline and increased abundances of thermocline taxa herald the decay of the proto-warm pool and higher productivity in the WEP, particularly ~ 9.0-8.8 Ma coincident with a major perturbation in tropical nannofossil assemblages. We suggest that this interval of increased productivity records El Niño-like conditions across the tropical Pacific and the initial phase of the widespread "biogenic bloom". Resurgence of a later proto-warm pool in the WEP ~6.5-6.1 Ma may have spurred renewed La Niña-like conditions, which contributed to a strong late phase of the "biogenic bloom" in the EEP.