962 resultados para Partial cation exchange


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we analyze how the ion concentrations in forest soil solution are determined by hydrological and biogeochemical processes. A dynamic model ACIDIC was developed, including processes common to dynamic soil acidification models. The model treats up to eight interacting layers and simulates soil hydrology, transpiration, root water and nutrient uptake, cation exchange, dissolution and reactions of Al hydroxides in solution, and the formation of carbonic acid and its dissociation products. It includes also a possibility to a simultaneous use of preferential and matrix flow paths, enabling the throughfall water to enter the deeper soil layers in macropores without first reacting with the upper layers. Three different combinations of routing the throughfall water via macro- and micropores through the soil profile is presented. The large vertical gradient in the observed total charge was simulated succesfully. According to the simulations, gradient is mostly caused by differences in the intensity of water uptake, sulfate adsorption and organic anion retention at the various depths. The temporal variations in Ca and Mg concentrations were simulated fairly well in all soil layers. For H+, Al and K there were much more variation in the observed than in the simulated concentrations. Flow in macropores is a possible explanation for the apparent disequilibrium of the cation exchange for H+ and K, as the solution H+ and K concentrations have great vertical gradients in soil. The amount of exchangeable H+ increased in the O and E horizons and decreased in the Bs1 and Bs2 horizons, the net change in whole soil profile being a decrease. A large part of the decrease of the exchangeable H+ in the illuvial B horizon was caused by sulfate adsorption. The model produces soil water amounts and solution ion concentrations which are comparable to the measured values, and it can be used in both hydrological and chemical studies of soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the effect of phosphate anion adsorption on the permeability values of homoionized kaolinite and montmorillonite clays is presented. The homoionized sodium, calcium and hydrogen clays are prepared by repeatedly washing the clays with 2N solutions of corresponding chlorides. Phosphate adsorption was induced by treating homoionized clays with phosphoric acids for different periods varying upto 1000 hrs. The coefficient of permeability of the clays was determined from one dimensional consolidation test results. The decrease in the permeability of kaolinite clays on phosphate adsorption has been explained on the fabric changes. For montmorillonite, both cation exchange and phosphate adsorption causes significant changes which are explained based on variation in the thickness of diffuse double layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new one-pot version of the titled reaction involves heating a mixture of a carbonyl compound, a phenylhydrazine, and the cation exchange resin Amberlite IR 120 in refluxing ethanol. A variety of enolizable aldehydes, and ketones and several substituted phenylhydrazines could thus be converted to the corresponding indoles in excellent yields (70-88%). Reaction times were typically 6-10 h, with the resin being then filtered off and the product isolated after minimal workup.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of gypsum on the strength of lime treated soils after a long period of interaction is not well understood yet. The present study is performed to scrutinize the physical and strength behavior of lime treated soil with varying gypsum content. Lime and gypsum contents varying from 0 to 6% are considered in the present study for curing periods up to 28 days. To understand the long-term effects, the work has been extended up to 365 days, particularly with the use of 6% lime content and varying gypsum contents. Atterberg's limits turned out to be marginally affected by cation exchange. Unconfined compressive strength behavior of lime treated soil varies considerably with gypsum content and curing period. However, trivial alteration in strength is observed in the soil treated with lower lime content (up to 4%) and gypsum content up to 6%. On the contrary, strength of soil-6% lime mixture with addition of varying gypsum content shows acceleration in early strength at 14 days curing period. However, the strength at 28 days of curing declines but regains afterwards for 90 days. The trend at longer curing period for 180 and 365 days is, however, not unique but varies with gypsum contents. An attempt has been made to explain these changes on the basis of the form of gypsum, formation and conversion of reacted compounds (CASHH, CASH, MI and Ettringite). The proposed explanations were supported by detailed characterization through thermal analysis, XRD, SEM and EDAX studies of soil-lime-gypsum mixtures. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycated hemoglobin (HbA(1c)) is a `gold standard' biomarker for assessing the glycemic index of an individual. HbA(1c) is formed due to nonenzymatic glycosylation at N-terminal valine residue of the P-globin chain. Cation exchange based high performance liquid chromatography (CE HPLC) is mostly used to quantify HbA(1c), in blood sample. A few genetic variants of hemoglobin and post-translationally modified variants of hemoglobin interfere with CE HPLC-based quantification,. resulting in its false positive estimation. Using mass spectrometry, we analyzed a blood sample with abnormally high HbA(1c) (52.1%) in the CE HPLC method. The observed HbA(1c) did not corroborate the blood glucose level of the patient. A mass spectrometry based bottom up proteomics approach, intact globin chain mass analysis, and chemical modification of the proteolytic peptides identified the presence of Hb Beckman, a genetic variant of hemoglobin, in the experimental sample. A similar surface area to charge ratio between HbA(1c) and Hb Beckman might have resulted in the coelution of the variant with HbA(1c) in CE HPLC. Therefore, in the screening of diabetes mellitus through the estimation of HbA(1c), it is important to look for genetic variants of hemoglobin in samples that show abnormally high glycemic index, and HbA(1c) must be estimated using an alternative method. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mobility of heavy metals (Zn, Cd, Pb and Ni) was studied in the laboratory acidic leaching two different soils around Ibadan with simulated acid rain. The sampling was carried out from two different sites viz: Orogun and Ilupeju respectively. For Orogun site a depth of 128cm was reached (consisting of four horizons). Different length of polyvinyl chloride (PVC) pipes were cut for different soil horizon depth as observed on the field. The PVC pipes were packed with requires masses of soil. This is then leached using simulated acid rain of different pH of 2.0, 4.0, 6.0 and 8.0 after spiking with known volume of standard solution of metals of interest. It was found that simulated acid rain enhanced the mobility of metals in solution. The pH, Cation Exchange capacity, % clay and organic matter were found to contributed majority to the mobility of metals. Generally as observed, the mobility of metal was to follow the order Zn>Ni>Pb>Cd as the soil is becoming more acidic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O comportamento dos radionuclídeos no solo pode variar de acordo com sua interação com os elementos que compões este solo. O fator de transferência (FT) é o parâmetro que descreve a interação que ocorre entre o solo e as plantas para um determinado radionuclídeo, observando que este solo tem propriedades químicas e físicas que favorecem seu crescimento. Através de ferramentas computacionais e baseado em solos extremos, com o FT conhecidos na literatura e nos parâmetros de solo que interferem no comportamento de 137Cs (como K trocável, capacidade de troca catiônica e pH), este trabalho visa aplicar técnicas de geoprocessamento para a criação de um mapa de vulnerabilidade de solos ao 137Cs e sua automação. Este estudo mostra que o uso de técnicas de geoprocessamento visando o mapeamento da vulnerabilidade ao 137Cs pode ser uma ferramenta importante para o planejamento de ações de emergência em áreas rurais, a identificação de áreas risco à contaminação radioativa, na escolha de ações corretivas adequadas, bem como no suporte a criação de políticas públicas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A contaminação do solo no município de Santo Amaro (BA) por metais tóxicos provocada pelas atividades da empresa Plumbum Mineração tem gerado impactos sobre a saúde ambiental e humana. O objetivo da presente pesquisa foi avaliar a viabilidade da remediação deste solo contaminado por chumbo e cádmio, utilizando diferentes fontes de fosfatos e fitorremediação com o capim vetiver [Vetiveria zizanioides (L.)]. O estudo foi realizado em colunas de PVC onde amostras de solo foram colocadas com a aplicação de fosfato dihidrogênio de potássio (KH2PO4) (T1); fertilizante fosfato natural reativo (FNR) (T2) e; uma mistura do KH2PO4 e de fertilizante FNR (T3). Amostras de solo contaminado sem tratamento (T0) foram utilizadas como controle. Após 60, 120 e 180 dias, alíquotas do solo foram retiradas das colunas para análises. Ao final de cada período, mudas de capim vetiver [(Vetiveria zizanioides (L.)] foram plantadas em vasos com as amostras de solo: T0, T1, T2 e T3 em triplicata. Para a determinação das concentrações de chumbo e cádmio no solo e tecidos vegetais foi utilizado o ICP-OES. A partir das análises física e química constatou-se que o solo possui textura argilosa e capacidade de troca catiônica (CTC) elevadas. As extrações com solução de ácido dietilenotriaminopentaacético (DTPA) e Toxicity Characteristic Leaching Procedure (TCLP) mostraram que o tratamento T1 seguido do T3 foram os mais eficientes na imobilização de Pb e Cd. Entretanto, todos os tratamentos resultaram em concentrações de metais ainda disponíveis no solo que excediam os limites estabelecidos pela USEPA, sendo o solo, portanto, considerado tóxico mesmo após o tratamento. Com base nas concentrações de metais extraídos através da extração sequencial pelo método BCR após a remediação e a fitorremediação do solo, foi verificado que todos os três tratamentos com fosfatos foram eficientes em imobilizar o Pb e Cd nas formas menos solúveis, porém, o Cd permaneceu mais solúvel e com maior mobilidade do que o Pb. Os ensaios de letalidade utilizando minhoca Eisenia andrei mostraram que a mortalidade observada no solo após 60 dias de tratamento foi significativamente reduzida após 120 e 180 dias de tratamento. A perda de biomassa pelas minhocas também foi reduzida de acordo com o tempo de tratamento. O teste de germinação com alfaces (Lactuca sativa L.) indicou que as amostras de solo tratadas continuam bastante tóxicas, apesar da disponibilidade reduzida do Pb e do Cd como visto nos resultados da extração por TCLP e por BCR. A avaliação de risco ecológico potencial indicou que os tratamentos do solo com fosfatos associado à fitorremediação reduziram a mobilidade do Pb, principalmente nos tratamentos T1 e T3. Para o Cd o risco ecológico potencial aumenta consideravelmente quando comparado com o Pb demonstrando que esse elemento, apesar dos tratamentos com fosfatos mais a fitorremediação continua móvel. O tratamento com KH2PO4 (T1) foi o mais eficiente na redução da mobilidade, disponibilidade e da toxicidade dos metais, seguido pelo T3 e T2 para o Pb e o T3 seguido pelo T1 e T2 para o Cd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A avaliação da qualidade dos solos e a redução da Mata Atlântica tem sido alvo de diversas pesquisas no Brasil e no mundo, principalmente quando estes estão atrelados ao recorte espacial de Unidades de Conservação. No entanto, tem sido difícil para os gestores dessas unidades a avaliação dos impactos ambientais gerados ao longo dos anos nas bacias hidrográficas, principalmente pela falta de investimentos. Esta dissertação teve por objetivo geral avaliar o atual estágio de degradação da bacia hidrográfica do Córrego da Caçada pertencente à Área de Proteção Ambiental Federal de Cairuçu, no município de Paraty RJ, analisando quantitativamente e qualitativamente a redução dos fragmentos de Mata Atlântica e estabelecendo relações com a degradação física e química dos solos dentro e fora dos fragmentos florestais. A metodologia utilizada para a redução ou avanço dos fragmentos de Mata Atlântica baseou-se no uso de fotografias aéreas do ano de 1956 e imagens de satélite de 2012, onde possibilitou a avaliação espaço-temporal do uso e cobertura das terras, através da produção de um mapa temático final. Além disso, foram elaborados mapas temáticos de reconhecimento da área de estudo, como o de hipsometria, de declividade, de orientação e forma das encostas, além da geração de perfis topográficos. Para a avaliação da qualidade física, química e biológica dos solos foram determinadas as curvas de distribuição granulométrica, a densidade relativa dos grãos sólidos e a densidade aparente, porosidade total, os limites de liquidez e plasticidade, a estabilidade dos agregados em água, análises morfológicas, a saturação de bases, a capacidade de troca catiônica (CTC), a saturação por alumínio, fósforo, pH e o carbono orgânico. Para tal, foi realizada a abertura de três perfis, sendo um em área de fragmento florestal e dois em áreas de pasto. O resultado das análises permitiu, segundo a Sociedade Brasileira de Ciência do solo, a classificação de dois tipos de solos na bacia, sendo: Cambissolo Háplico Tb Distrófico Típico em área fragmento florestal e em área de pasto, e um Latossolo Amarelo Tb Distrófico Típico em área de pasto. Os resultados de laboratório mostraram que os solos avaliados têm baixa fertilidade e valores variados nos resultados de física do solo. No entanto, além do histórico de uso do solo caracterizado pelas práticas rudimentares do manejo empregado pelos Caiçaras, o clima predominante na região possibilita um regime pluviométrico anual que passa dos 2.000mm de chuva/ano, caracterizando solos muito lixiviados e pobres quimicamente. Portanto, conclui-se que a relação das propriedades físicas e químicas avaliadas junto ao manejo inadequado ao longo dos anos tem apresentado um cenário de grandes dificuldades para a recuperação florestal na bacia hidrográfica do Córrego da Caçada, o que mostra a importância da avaliação dos impactos ambientais não só pelo recorte de bacias hidrográficas, como contextualizar seu posicionamento dentro de Unidades de Conservação, com legislações e objetivos específicos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta -bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surfactant-clay interactions are key for the development of new clay applications and inorganic-organic nanocomposites. Bentonite, with montmorillonite as the principal clay mineral constituent, was modified with varying concentrations of hexadecethyltrimethylammonium chloride (HDTMA), as a reference cationic surfactant, polypropylene glycol (PPG) 1200 and 2000, as non-ionic surfactants, and lecithin and Topcithin®, as amphiphilic phospholipid surfactants, according to the cation exchange capacity (CEC). The modified bentonites were characterised by X-ray diffraction, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectrometry, specific surface area and pore volume. Three intercalation regions have been identified depending on the surfactant. The non-ionic surfactant caused only a crystalline expansion of bentonite interlayers, while the cationic surfactant induced an osmotic intercalation. The amphiphilic lecithin derivatives intercalated more extensively with the bentonite matrix. The TGA and the FTIR spectra showed that, at lower concentrations, the PPGs and HDTMA adopted a disordered conformation that required more energy to degrade, while at higher concentrations, the surfactants were ordered in the interlayer space of the bentonite. The lecithin derivative surfactant had a greater thermal and conformation stability. The specific surface area reduced with increasing surfactant concentrations. This study highlights the effect of surfactant type on the interlayer space of montmorillonite in the perspective of developing novel clay functions. © 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.