84 resultados para Parser


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. ^ Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. ^ This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model’s parsing mechanism. ^ The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For some years now the Internet and World Wide Web communities have envisaged moving to a next generation of Web technologies by promoting a globally unique, and persistent, identifier for identifying and locating many forms of published objects . These identifiers are called Universal Resource Names (URNs) and they hold out the prospect of being able to refer to an object by what it is (signified by its URN), rather than by where it is (the current URL technology). One early implementation of URN ideas is the Unicode-based Handle technology, developed at CNRI in Reston Virginia. The Digital Object Identifier (DOI) is a specific URN naming convention proposed just over 5 years ago and is now administered by the International DOI organisation, founded by a consortium of publishers and based in Washington DC. The DOI is being promoted for managing electronic content and for intellectual rights management of it, either using the published work itself, or, increasingly via metadata descriptors for the work in question. This paper describes the use of the CNRI handle parser to navigate a corpus of papers for the Electronic Publishing journal. These papers are in PDF format and based on our server in Nottingham. For each paper in the corpus a metadata descriptor is prepared for every citation appearing in the References section. The important factor is that the underlying handle is resolved locally in the first instance. In some cases (e.g. cross-citations within the corpus itself and links to known resources elsewhere) the handle can be handed over to CNRI for further resolution. This work shows the encouraging prospect of being able to use persistent URNs not only for intellectual property negotiations but also for search and discovery. In the test domain of this experiment every single resource, referred to within a given paper, can be resolved, at least to the level of metadata about the referred object. If the Web were to become more fully URN aware then a vast directed graph of linked resources could be accessed, via persistent names. Moreover, if these names delivered embedded metadata when resolved, the way would be open for a new generation of vastly more accurate and intelligent Web search engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans use their grammatical knowledge in more than one way. On one hand, they use it to understand what others say. On the other hand, they use it to say what they want to convey to others (or to themselves). In either case, they need to assemble the structure of sentences in a systematic fashion, in accordance with the grammar of their language. Despite the fact that the structures that comprehenders and speakers assemble are systematic in an identical fashion (i.e., obey the same grammatical constraints), the two ‘modes’ of assembling sentence structures might or might not be performed by the same cognitive mechanisms. Currently, the field of psycholinguistics implicitly adopts the position that they are supported by different cognitive mechanisms, as evident from the fact that most psycholinguistic models seek to explain either comprehension or production phenomena. The potential existence of two independent cognitive systems underlying linguistic performance doubles the problem of linking the theory of linguistic knowledge and the theory of linguistic performance, making the integration of linguistics and psycholinguistic harder. This thesis thus aims to unify the structure building system in comprehension, i.e., parser, and the structure building system in production, i.e., generator, into one, so that the linking theory between knowledge and performance can also be unified into one. I will discuss and unify both existing and new data pertaining to how structures are assembled in understanding and speaking, and attempt to show that the unification between parsing and generation is at least a plausible research enterprise. In Chapter 1, I will discuss the previous and current views on how parsing and generation are related to each other. I will outline the challenges for the current view that the parser and the generator are the same cognitive mechanism. This single system view is discussed and evaluated in the rest of the chapters. In Chapter 2, I will present new experimental evidence suggesting that the grain size of the pre-compiled structural units (henceforth simply structural units) is rather small, contrary to some models of sentence production. In particular, I will show that the internal structure of the verb phrase in a ditransitive sentence (e.g., The chef is donating the book to the monk) is not specified at the onset of speech, but is specified before the first internal argument (the book) needs to be uttered. I will also show that this timing of structural processes with respect to the verb phrase structure is earlier than the lexical processes of verb internal arguments. These two results in concert show that the size of structure building units in sentence production is rather small, contrary to some models of sentence production, yet structural processes still precede lexical processes. I argue that this view of generation resembles the widely accepted model of parsing that utilizes both top-down and bottom-up structure building procedures. In Chapter 3, I will present new experimental evidence suggesting that the structural representation strongly constrains the subsequent lexical processes. In particular, I will show that conceptually similar lexical items interfere with each other only when they share the same syntactic category in sentence production. The mechanism that I call syntactic gating, will be proposed, and this mechanism characterizes how the structural and lexical processes interact in generation. I will present two Event Related Potential (ERP) experiments that show that the lexical retrieval in (predictive) comprehension is also constrained by syntactic categories. I will argue that the syntactic gating mechanism is operative both in parsing and generation, and that the interaction between structural and lexical processes in both parsing and generation can be characterized in the same fashion. In Chapter 4, I will present a series of experiments examining the timing at which verbs’ lexical representations are planned in sentence production. It will be shown that verbs are planned before the articulation of their internal arguments, regardless of the target language (Japanese or English) and regardless of the sentence type (active object-initial sentence in Japanese, passive sentences in English, and unaccusative sentences in English). I will discuss how this result sheds light on the notion of incrementality in generation. In Chapter 5, I will synthesize the experimental findings presented in this thesis and in previous research to address the challenges to the single system view I outlined in Chapter 1. I will then conclude by presenting a preliminary single system model that can potentially capture both the key sentence comprehension and sentence production data without assuming distinct mechanisms for each.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the prominent questions in modern psycholinguistics is the relationship between the grammar and the parser. Within the approach of Generative Grammar, this issue has been investigated in terms of the role that Principles of Universal Grammar may play in language processing. The aim of this research experiment is to investigate this topic. Specifically, this experiment aims to test whether the Minimal Structure Principle (MSP) plays a role in the processing of Preposition-Stranding versus Pied-Piped Constructions. This investigation is made with a self-paced reading task, an on-line processing test that measures participants’ unconscious reaction to language stimuli. Monolingual English speakers’ reading times of sentences with Preposition-Stranding and Pied-Piped Constructions are compared. Results indicate that neither construction has greater processing costs, suggesting that factors other than the MSP are active during language processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.