689 resultados para Paraventricular Hypothalamus
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.
Resumo:
The beta thyroid hormone receptor (TRbeta), but not TRalpha1, plays a specific role in mediating T(3)-dependent repression of hypothalamic TRH transcription. To investigate the structural basis of isoform specificity, we compared the transcriptional regulation and DNA binding obtained with chimeric and N-terminally deleted TRs. Using in vivo transfection assays to follow hypothalamic TRH transcription in the mouse brain, we found that TRbeta1 and chimeras with the TRbeta1 N terminus did not affect either transcriptional activation or repression from the rat TRH promoter, whereas N-terminally deleted TRbeta1 impaired T(3)-dependent repression. TRalpha1 or chimeras with the TRalpha1 N terminus reduced T(3)-independent transcriptional activation and blocked T(3)-dependent repression of transcription. Full deletion of the TRalpha1 N terminus restored ligand-independent activation of transcription. No TR isoform specificity was seen after transcription from a positive thyroid hormone response element. Gel mobility assays showed that all TRs tested bound specifically to the main negative thyroid hormone response element in the TRH promoter (site 4). Addition of neither steroid receptor coactivator 1 nor nuclear extracts from the hypothalamic paraventricular nuclei revealed any TR isoform specificity in binding to site 4. Thus N-terminal sequences specify TR T(3)-dependent repression of TRH transcription but not DNA recognition, emphasizing as yet unknown neuron-specific contributions to protein-promoter interactions in vivo.
Resumo:
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Resumo:
The hypothalamus plays an essential role in the central nervous system of mammals by among others regulating glucose homeostasis, food intake, temperature, and to some extent blood pressure. Assessments of hypothalamic metabolism using, e.g. (1)H MRS in mouse models can provide important insights into its function. To date, direct in vivo (1)H MRS measurements of hypothalamus have not been reported. Here, we report that in vivo single voxel measurements of mouse hypothalamus are feasible using (1)H MRS at 14.1T. Localized (1)H MR spectra from hypothalamus were obtained unilaterally (2-2.2 microL, VOI) and bilaterally (4-4.4 microL) with a quality comparable to that of hippocampus (3-3.5 microL). Using LCModel, a neurochemical profile consisting of 21 metabolites was quantified for both hypothalamus and hippocampus with most of the Cramér-Rao lower bounds within 20%. Relative to the hippocampus, the hypothalamus was characterized by high gamma-aminobutryric acid and myo-inositol, and low taurine concentrations. When studying transgenic mice with no glucose transporter isoform 8 expressed, small metabolic changes were observed, yet glucose homeostasis was well maintained. We conclude that a specific neurochemical profile of mouse hypothalamus can be measured by (1)H MRS which will allow identifying and following metabolic alterations longitudinally in the hypothalamus of genetic modified models.
Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model
Resumo:
The anx/anx mouse displays poor appetite and lean appearance and is considered a good model for the study of anorexia nervosa. To identify new genes involved in feeding behavior and body weight regulation we performed an expression profiling in the hypothalamus of the anx/anx mice. Using commercial microarrays we detected 156 differentially expressed genes and validated 92 of those using TaqMan low-density arrays. The expression of a set of 87 candidate genes selected based on literature evidences was also quantified by TaqMan low-density arrays. Our results showed enrichment in deregulated genes involved in cell death, cell morphology and cancer as well as an alteration of several signaling circuits involved in energy balance including neuropeptide Y and melanocortin signaling. The expression profile along with the phenotype led us to conclude that anx/anx mice resemble the anorexia-cachexia syndrome typically observed in cancer, infection with human immunodeficiency virus or chronic diseases, rather than starvation, and that anx/anx mice could be considered a good model for the treatment and investigation of this condition.
Resumo:
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.
Resumo:
Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of approximately 1.5 micromol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.
Resumo:
Release of alpha-MSH from rat hypothalamic slices was characterized with respect to ionic requirements and possible diurnal variations using a sensitive radioimmunoassay. Addition of 47 mM KCl to the superfusion medium resulted in a twofold increase in alpha-MSH functions as a neurotransmitter or neuromodulator in the hypothalamus. Both spontaneous and potassium-induced alpha-MSH release compared to spontaneous release. Removal of calcium from the superfusion medium abolished the potassium-evoked release of alpha-MSH. This supports the concept that alpha-MSH release were related to diurnal variation. Marked release from the slices was observed at 10.10 h, corresponding to a peak in the alpha-MSH concentration in the hypothalamus [18] and to a lower levels of alpha-MSH in the blood. Contrarily, no significant release from the hypothalamus was obtained at 17.00 h when hypothalamic alpha-MSH content was low, but blood levels exhibited a peak. These findings suggest that there are differences in the regulation of the alpha-MSH from the pituitary and that in the hypothalamus.
Resumo:
The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.
Resumo:
Manganese (Mn(2+))-enhanced magnetic resonance imaging studies of the neuronal pathways of the hypothalamus showed that information about the regulation of food intake and energy balance circulate through specific hypothalamic nuclei. The dehydration-induced anorexia (DIA) model demonstrated to be appropriate for studying the hypothalamus with Mn(2+)-enhanced magnetic resonance imaging. Manganese is involved in the normal functioning of a variety of physiological processes and is associated with enzymes contributing to neurotransmitter synthesis and metabolism. It also induces psychiatric and motor disturbances. The molecular mechanisms by which Mn(2+) produces alterations of the hypothalamic physiological processes are not well understood. (1)H-magnetic resonance spectroscopy measurements of the rodent hypothalamus are challenging due to the distant location of the hypothalamus resulting in limited measurement sensitivity. The present study proposed to investigate the effects of Mn(2+) on the neurochemical profile of the hypothalamus in normal, DIA, and overnight fasted female rats at 14.1 T. Results provide evidence that γ-aminobutyric acid has an essential role in the maintenance of energy homeostasis in the hypothalamus but is not condition specific. On the contrary, glutamine, glutamate, and taurine appear to respond more accurately to Mn(2+) exposure. An increase in glutamine levels could also be a characteristic response of the hypothalamus to DIA.
Resumo:
BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.
Resumo:
The hormone oxytocin is released by the neuropituitary gland through stimulation of the neurons of the supraoptic and paraventricular nuclei of the hypothalamus. In order to determine the physiological concentrations of this hormone in domestic cats, blood samples were collected from 15 male animals (Felis silvestris catus) during the pre- and post-puberty periods (at four and eight months of age, respectively). Oxytocin determination was accomplished by radioimmunoassay. The average oxytocin concentrations measured in the pre- and post-puberty periods were 2.54±0.24 (μg/dL) and 2.53±0.28 (μg/dL), respectively, and there were no statistical differences between these measurements. Because there are few literature on the analysis of this hormone, especially in the case of male Felis silvestris catus, more studies on the influence of oxytocin on the physiology and reproduction of this species should be conducted under maintenance and situations of stress (such as transportation), and other routine events.
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback