1000 resultados para Paramodular forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella typhimurium YeaD (stYeaD), annotated as a putative aldose 1-epimerase, has a very low sequence identity to other well characterized mutarotases. Sequence analysis suggested that the catalytic residues and a few of the substrate-binding residues of galactose mutarotases (GalMs) are conserved in stYeaD. Determination of the crystal structure of stYeaD in an orthorhombic form at 1.9 angstrom resolution and in a monoclinic form at 2.5 angstrom resolution revealed this protein to adopt the beta-sandwich fold similar to GalMs. Structural comparison of stYeaD with GalMs has permitted the identification of residues involved in catalysis and substrate binding. In spite of the similar fold and conservation of catalytic residues, minor but significant differences were observed in the substrate- binding pocket. These analyses pointed out the possible role of Arg74 and Arg99, found only in YeaD-like proteins, in ligand anchoring and suggested that the specificity of stYeaD may be distinct from those of GalMs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoflavonoids are naturally occurring plant derived biochemicals, which act as phytoalexins. Isoflavonoids are of interest due to their estrogenic and other potential physiological properties, particularly in mammals that typically consume isoflavonoid rich nutrients such as soy and red clover. The literature review of this thesis mainly focuses on the reduced metabolites of hydroxy and/or methoxy substituted isoflavones with four groups: isoflavan-4-ols, isoflav-3-enes, isoflavans and α-methyldeoxybenzoins (1,2-diarylpropan-1-ones), which are all reduced metabolites of food derived isoflavones in mammals. Related isoflavan-4-ones are briefly discussed. Results of an extensive survey of the literature concerning the synthesis of polyhydroxy- or methoxysubstituted isoflavonoids and especially asymmetric approaches are discussed. The experimental section describes new synthetic methods to prepare polyphenolic reduced isoflavonoid structures such as isoflav-3-enes, isoflavan-4-ones, cis- and trans-isoflavan-4-ols, 1,2-diarylpropan-1-ones and isoflavans by various hydride reagents and hydrogenations. The specific reactivity differences of various hydride reagents toward isoflavonoids are discussed. The first enantioselective synthesis of natural (S)-(-)-equol and the opposite enantiomer (R)-(+)-equol is also described by the asymmetric iridium PHOX catalysed hydrogenation of isoflav-3-enes. Both of these equol enantiomers are found to possess biological activity in mammals due to estrogen receptor binding activity. The natural enantiomer prefers estrogen receptor β and the R-enantiomer prefers the estrogen receptor α. Also the precursor, isoflav-3-ene, is found to possess positive biological effects on mammals. In connection with the synthetic work, the (S)-(-)-equol was discovered from serum of ewes after isoflavone rich red clover feeding. The chiral HPLC method was developed to identify natural equol enantiomer for the first time in this species. The first synthesis of natural isoflavonoid (R)-(-)-angolensin and its enantiomer (S)-(+)-angolensin is desribed by the use of recyclable chiral auxiliaries (chiral pseudoephedrines). The method offers a general approach also to other natural polyphenolic 1,2-diarylpropan-1-ones and to further study isoflavonoid metabolism in human and other mammals. The absolute configurations of these new chiral isoflavonoid metabolites were determined by X-ray spectroscopy. Also thorough NMR and MS analysis of synthesised structures are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inovirus is a helical array of alpha-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of two different forms of the calcium perchlorate complex of cyclo(Ala-Leu-Pro-Gly)2 have been determined and refined using X-ray crystallographic techniques. Orthorhombic form: C32H52N8O8.Ca(ClO4)2.7H2O.2CH3OH, space group C222(1), a = 14.366, b = 18.653, c = 19.824 A, Z = 4, R = 0.068 for 2208 observed reflections. Monoclinic form: C32H52N8O8.Ca(ClO4)2.4H2O, space group C2, a = 21.096, b = 10.182, c = 11.256 A, beta = 103.33 degrees, Z = 2, R = 0.075 for 2165 observed reflections. The cyclic peptide molecule in both the structures has the form of a twofold symmetric, slightly elongated bowl. Type II' beta-turns, involving Gly and Ala at the corners, exist at the two ends of the molecule. The interior of the molecule is substantially hydrophilic, and the external surface of the bowl is largely hydrophobic. The calcium ion is located at the centre of the mouth of the bowl-like molecule. In both crystal forms, four peptide carbonyl oxygens from the cyclic peptide and two solvent oxygens coordinate to the metal ion. The mode of complexation may be described as incomplete encapsulation as, for example, in the case of metal complexes of antamanide. In the crystal structures the complex ions are held together by hydrogen bonds involving perchlorate ions and water molecules. The molecular structure observed in the crystals is entirely consistent with the results of solution studies, which also indicate the conformation of the cyclic peptide in the complex to be similar to that of the uncomplexed molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray structures of new crystal forms of peptidyl-tRNA hydrolase from M.similar to tuberculosis reported here and the results of previous X-ray studies of the enzyme from different sources provide a picture of the functionally relevant plasticity of the protein molecule. The new X-ray results confirm the connection deduced previously between the closure of the lid at the peptide-binding site and the opening of the gate that separates the peptide-binding and tRNA-binding sites. The plasticity of the molecule indicated by X-ray structures is in general agreement with that deduced from the available solution NMR results. The correlation between the lid and the gate movements is not, however, observed in the NMR structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Background: Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" Results: A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. Conclusions: The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.