252 resultados para Paralysie cérébrale
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
L’utilisation de méthodes d’investigation cérébrale avancées a permis de mettre en évidence la présence d’altérations à court et à long terme à la suite d’une commotion cérébrale. Plus spécifiquement, des altérations affectant l’intégrité de la matière blanche et le métabolisme cellulaire ont récemment été révélées par l’utilisation de l’imagerie du tenseur de diffusion (DTI) et la spectroscopie par résonance magnétique (SRM), respectivement. Ces atteintes cérébrales ont été observées chez des athlètes masculins quelques jours après la blessure à la tête et demeuraient détectables lorsque les athlètes étaient à nouveau évalués six mois post-commotion. En revanche, aucune étude n’a évalué les effets neurométaboliques et microstructuraux dans la phase aigüe et chronique d’une commotion cérébrale chez les athlètes féminines, malgré le fait qu’elles présentent une susceptibilité accrue de subir ce type de blessure, ainsi qu’un nombre plus élevé de symptômes post-commotionnels et un temps de réhabilitation plus long. Ainsi, les études composant le présent ouvrage visent globalement à établir le profil d’atteintes microstructurales et neurométaboliques chez des athlètes féminines par l’utilisation du DTI et de la SRM. La première étude visait à évaluer les changements neurométaboliques au sein du corps calleux chez des joueurs et joueuses de hockey au cours d’une saison universitaire. Les athlètes ayant subi une commotion cérébrale pendant la saison ont été évalués 72 heures, 2 semaines et 2 mois après la blessure à la tête en plus des évaluations pré et post-saison. Les résultats démontrent une absence de différences entre les athlètes ayant subi une commotion cérébrale et les athlètes qui n’en ont pas subie. De plus, aucune différence entre les données pré et post-saison a été observée chez les athlètes masculins alors qu’une diminution du taux de N-acetyl aspartate (NAA) n’a été mise en évidence chez les athlètes féminines, suggérant ainsi un impact des coups d’intensité sous-clinique à la tête. La deuxième étude, qui utilisait le DTI et la SRM, a révélé des atteintes chez des athlètes féminines commotionnées asymptomatiques en moyenne 18 mois post-commotion. Plus spécifiquement, la SRM a révélé une diminution du taux de myo-inositol (mI) au sein de l’hippocampe et du cortex moteur primaire (M1) alors que le DTI a mis en évidence une augmentation de la diffusivité moyenne (DM) dans plusieurs faisceaux de matière blanche. De iii plus, une approche par région d’intérêt a mis en évidence une diminution de la fraction d’anisotropie (FA) dans la partie du corps calleux projetant vers l’aire motrice primaire. Le troisième article évaluait des athlètes ayant subi une commotion cérébrale dans les jours suivant la blessure à la tête (7-10 jours) ainsi que six mois post-commotion avec la SRM. Dans la phase aigüe, des altérations neuropsychologiques combinées à un nombre significativement plus élevé de symptômes post-commotionnels et dépressifs ont été trouvés chez les athlètes féminines commotionnées, qui se résorbaient en phase chronique. En revanche, aucune différence sur le plan neurométabolique n’a été mise en évidence entre les deux groupes dans la phase aigüe. Dans la phase chronique, les athlètes commotionnées démontraient des altérations neurométaboliques au sein du cortex préfrontal dorsolatéral (CPDL) et M1, marquées par une augmentation du taux de glutamate/glutamine (Glx). De plus, une diminution du taux de NAA entre les deux temps de mesure était présente chez les athlètes contrôles. Finalement, le quatrième article documentait les atteintes microstructurales au sein de la voie corticospinale et du corps calleux six mois suivant une commotion cérébrale. Les analyses n’ont démontré aucune différence au sein de la voie corticospinale alors que des différences ont été relevées par segmentation du corps calleux selon les projections des fibres calleuses. En effet, les athlètes commotionnées présentaient une diminution de la DM et de la diffusivité radiale (DR) au sein de la région projetant vers le cortex préfrontal, un volume moindre des fibres de matière blanche dans la région projetant vers l’aire prémotrice et l’aire motrice supplémentaire, ainsi qu’une diminution de la diffusivité axiale (DA) dans la région projetant vers l’aire pariétale et temporale. En somme, les études incluses dans le présent ouvrage ont permis d’approfondir les connaissances sur les effets métaboliques et microstructuraux des commotions cérébrales et démontrent des effets délétères persistants chez des athlètes féminines. Ces données vont de pair avec la littérature scientifique qui suggère que les commotions cérébrales n’entraînent pas seulement des symptômes temporaires.
Resumo:
Les enfants atteints de déficience motrice cérébrale (DMC) intégrés en milieu scolaire ordinaire vivent davantage de difficultés relatives à la compétence sociale que les autres enfants. En lien avec le modèle SOCIAL de Beauchamp et Anderson (2010) (The socio-cognitive integration of abilities model), deux questions sont abordées afin de comprendre ces difficultés. Dans le premier article, les attributions d’intentions (AI) hostiles sont mesurées par le Home Interview with Child (HIWC), un ensemble de vignettes représentants des situations sociales ambigües. Les résultats montrent que l’acceptation sociale, plus que le statut de naissance, est associé à l’hostilité des AI à 15 ans. Les enfants rejetés et populaires ont un niveau d’AI hostiles supérieur aux enfants de la catégorie d’acceptation sociale moyenne. Il est proposé que l’acceptation sociale soit un médiateur important à considérer dans le développement d’un biais d’AI hostile chez les enfants atteints de DMC. Dans le deuxième article, la dominance sociale (i.e., une forme de leadership) est évaluée dans une situation de résolution de problème en équipe. Les comportements relatifs à la dominance sociale (i.e., les comportements prosociaux et coercitifs) sont codifiés à l’aide d’une grille créée et validée pour cette étude. Les résultats révèlent que, sans égard au score d’acceptation sociale, les enfants atteints de DMC effectuent significativement moins de comportements prosociaux et coercitifs que les enfants sans DMC au cours de la résolution de problème. De plus, leur équipe de travail émet un nombre de comportements prosociaux et coercitifs inférieur à celui observé dans l’équipe des deux enfants témoins. Les difficultés de compétence sociale observées chez les jeunes atteints de DMC pourraient être en partie expliquées par une faible dominance sociale lors d’activités sollicitant les fonctions exécutives. Enfin, les deux articles présentés permettent d’explorer de nouvelles avenues pour comprendre et soutenir le développement de la compétence sociale chez les enfants et les adolescents atteints de DMC. Les interventions auprès de cette clientèle devraient avoir lieu tôt et devraient cibler autant les habiletés motrices de ces jeunes que leur compétence sociale, avant que des signaux clairs ne compromettent déjà leur expérience sociale globale en milieu scolaire ordinaire.
Resumo:
L'enfant ayant une déficience motrice cérébrale (DMC) légère présente des déficits posturaux qui limitent son intégration sociale. L'hippothérapie est une forme d'intervention utilisant le mouvement du cheval pour stimuler des réajustements posturaux. L’objectif de cette recherche était de quantifier l’effet de 10 semaines d’hippothérapie sur le contrôle postural et la motricité d'enfants ayant une DMC légère. Un devis pré-expérimental à mesures répétées où chaque enfant (n=13) est son propre contrôle a été utilisé. Les critères d’inclusion étaient: être âgés entre 4 et 16 ans et avoir une DMC légère. L’intervention d’une durée de 10 semaines consistait en une séance par semaine d’hippothérapie de 30 minutes, où l'enfant était placé dans différentes positions sur le cheval. La motricité globale, particulièrement la capacité à se tenir debout, marcher, courir et sauter a été mesurée par les dimensions D et E du Gross Motor Function Measure (GMFM-88) et la coordination, la vitesse, la force et l’équilibre par le Bruininks-Oseretski Test of Motor Proficiency-Short Form (BOT2-SF). La motricité fine a été évaluée par différentes tâches de précision, d’intégration et de dextérité manuelle (BOT2-SF). Les variables biomécaniques évaluant la stabilité posturale en position assise et debout ont été quantifiées par le déplacement du centre de pression (CdeP). Le déplacement des membres supérieurs a été enregistré lors de tâches unilatérales à l'aide d’un système d’analyse tridimensionnelle du mouvement (VICON). Treize sujets (âgés de 7,3 ± 2,7 ans) ont été évalués avant (mesure de base), après l’intervention et à 10 semaines post-intervention (mesure de suivi). La stabilité posturale de l’enfant sur le cheval a été évaluée à l’aide de modules inertiels multiaxiaux fixés sur le cheval et sur l’enfant (tête, tronc) à deux temps pendant l’intervention. À la suite de l’intervention, la motricité globale s’est améliorée significativement (GMFM-88 dimensions; p=0,005 et BOT2-SF total; p=0,006), et spécifiquement au niveau de la force des abdominaux et des membres supérieurs (p=0,012), de l’équilibre (p=0,025) et des activités de précision de la main (p=0,013). Les analyses du contrôle postural sur le cheval montrent une augmentation de la fréquence cumulée dans la direction médiolatérale (M/L) (p=0,033), et une diminution de l’amplitude de la fréquence cumulée en vertical (p=0,007). Ces résultats peuvent s’interpréter comme étant une augmentation de la rapidité d'adaptation dans la direction M/L doublée d'un amortissement du tronc diminué dans l’axe vertical. Le contrôle postural debout statique s'est amélioré (p=0,013) dans l'axe M/L attribuable aux enfants diplégiques de l'étude. Ces résultats se sont maintenus après la fin de l’intervention. Aucune amélioration du déplacement des membres supérieurs n'a été notée. Nos résultats permettent de suggérer l’utilisation de l'hippothérapie, par les professionnels de la réadaptation, comme complément à l'intervention traditionnelle.
Resumo:
L’utilisation de méthodes d’investigation cérébrale avancées a permis de mettre en évidence la présence d’altérations à court et à long terme à la suite d’une commotion cérébrale. Plus spécifiquement, des altérations affectant l’intégrité de la matière blanche et le métabolisme cellulaire ont récemment été révélées par l’utilisation de l’imagerie du tenseur de diffusion (DTI) et la spectroscopie par résonance magnétique (SRM), respectivement. Ces atteintes cérébrales ont été observées chez des athlètes masculins quelques jours après la blessure à la tête et demeuraient détectables lorsque les athlètes étaient à nouveau évalués six mois post-commotion. En revanche, aucune étude n’a évalué les effets neurométaboliques et microstructuraux dans la phase aigüe et chronique d’une commotion cérébrale chez les athlètes féminines, malgré le fait qu’elles présentent une susceptibilité accrue de subir ce type de blessure, ainsi qu’un nombre plus élevé de symptômes post-commotionnels et un temps de réhabilitation plus long. Ainsi, les études composant le présent ouvrage visent globalement à établir le profil d’atteintes microstructurales et neurométaboliques chez des athlètes féminines par l’utilisation du DTI et de la SRM. La première étude visait à évaluer les changements neurométaboliques au sein du corps calleux chez des joueurs et joueuses de hockey au cours d’une saison universitaire. Les athlètes ayant subi une commotion cérébrale pendant la saison ont été évalués 72 heures, 2 semaines et 2 mois après la blessure à la tête en plus des évaluations pré et post-saison. Les résultats démontrent une absence de différences entre les athlètes ayant subi une commotion cérébrale et les athlètes qui n’en ont pas subie. De plus, aucune différence entre les données pré et post-saison a été observée chez les athlètes masculins alors qu’une diminution du taux de N-acetyl aspartate (NAA) n’a été mise en évidence chez les athlètes féminines, suggérant ainsi un impact des coups d’intensité sous-clinique à la tête. La deuxième étude, qui utilisait le DTI et la SRM, a révélé des atteintes chez des athlètes féminines commotionnées asymptomatiques en moyenne 18 mois post-commotion. Plus spécifiquement, la SRM a révélé une diminution du taux de myo-inositol (mI) au sein de l’hippocampe et du cortex moteur primaire (M1) alors que le DTI a mis en évidence une augmentation de la diffusivité moyenne (DM) dans plusieurs faisceaux de matière blanche. De iii plus, une approche par région d’intérêt a mis en évidence une diminution de la fraction d’anisotropie (FA) dans la partie du corps calleux projetant vers l’aire motrice primaire. Le troisième article évaluait des athlètes ayant subi une commotion cérébrale dans les jours suivant la blessure à la tête (7-10 jours) ainsi que six mois post-commotion avec la SRM. Dans la phase aigüe, des altérations neuropsychologiques combinées à un nombre significativement plus élevé de symptômes post-commotionnels et dépressifs ont été trouvés chez les athlètes féminines commotionnées, qui se résorbaient en phase chronique. En revanche, aucune différence sur le plan neurométabolique n’a été mise en évidence entre les deux groupes dans la phase aigüe. Dans la phase chronique, les athlètes commotionnées démontraient des altérations neurométaboliques au sein du cortex préfrontal dorsolatéral (CPDL) et M1, marquées par une augmentation du taux de glutamate/glutamine (Glx). De plus, une diminution du taux de NAA entre les deux temps de mesure était présente chez les athlètes contrôles. Finalement, le quatrième article documentait les atteintes microstructurales au sein de la voie corticospinale et du corps calleux six mois suivant une commotion cérébrale. Les analyses n’ont démontré aucune différence au sein de la voie corticospinale alors que des différences ont été relevées par segmentation du corps calleux selon les projections des fibres calleuses. En effet, les athlètes commotionnées présentaient une diminution de la DM et de la diffusivité radiale (DR) au sein de la région projetant vers le cortex préfrontal, un volume moindre des fibres de matière blanche dans la région projetant vers l’aire prémotrice et l’aire motrice supplémentaire, ainsi qu’une diminution de la diffusivité axiale (DA) dans la région projetant vers l’aire pariétale et temporale. En somme, les études incluses dans le présent ouvrage ont permis d’approfondir les connaissances sur les effets métaboliques et microstructuraux des commotions cérébrales et démontrent des effets délétères persistants chez des athlètes féminines. Ces données vont de pair avec la littérature scientifique qui suggère que les commotions cérébrales n’entraînent pas seulement des symptômes temporaires.
Resumo:
Dans le cadre du cours PHT-6123 Projet d’intégration
Resumo:
Dans le cadre du cours PHT-6123 Projet d’intégration
Resumo:
Résumé: L'objectif de l'étude est de caractériser la manifestation clinique d'une atteinte vasculaire cérébrale ischémique aiguë limitée au cortex insulaire, région intrigante et méconnue du cerveau humain. Dans la pratique clinique, une atteinte vasculaire aiguë limitée à l'insula, sans compromission d'autres régions cérébrales, est exceptionnelle et sa manifestation clinique neurologique est souvent non reconnue. L'étude est focalisée sur quatre patients, inscrits dans le Lausanne Stroke Registry, présentant une nouvelle atteinte vasculaire cérébrale avec une lésion unique purement limitée au cortex insulaire, objectivée à l'aide de la résonance magnétique (IRM). L'étude a mis en évidence cinq manifestations cliniques principales : 1) Troubles de la sensibilité corporelle sont révélé chez trois patients avec une atteinte insulaire postérieure (deux avec un syndrome pseudothalamique, un avec un déficit à distribution partielle). 2) Un patient avec une lésion insulaire postérieure gauche présent des troubles du goût. 3) Un syndrome pseudovestibulaire avec vertiges non rotatoires, instabilité à la marche sans nystagmus, est mis en évidence chez trois patients avec une atteinte ischémique insulaire postérieure. 4) Un patient avec atteinte de l'insula postérieure droite présente des épisodes d'hypertension artérielle d'origine cryptique. 5) Des troubles neuropsychologiques tels qu'aphasie et dysarthrie sont détectés chez les patients avec une atteinte insulaire postérieure gauche, un épisode de somatoparaphrénie est rapporté avec une atteinte insulaire postérieure droite. En conclusion, les atteintes vasculaires cérébrales ischémiques aiguës limitées au cortex insulaire postérieur peuvent se manifester principalement avec un tableau clinique caractérisé par un syndrome pseudothalamique associé à une symptomatologie pseudovertigineuse. Les lésions insulaires postérieures peuvent se manifester avec une dysarthrie et des troubles du goût, une aphasie (gauche), une somatoparaphrénie et une dysfonction hypertensive (droite). L'étude n'a pas mis en évidence de dysphagie, reportée dans les atteintes insulaires antérieures. Abstract: Objective: To characterize clinically acute insular strokes from four patients with, a first ever acute stroke restricted to the insula on MRI. Methods: The authors studied the clinical presentation of four patients with a first ever acute stroke restricted to the insula on MRI. Results: The authors found five main groups of clinical presentations: 1) somatosensory deficits in three patients with posterior insular stroke (two with a transient pseudothalamic sensory syndrome, one with partial distribution); 2) gustatory disorder in a patient with left posterior insular infarct; 3) vestibular-like syndrome, with dizziness, gait instability, and tendency to fall, but no nystagmus, in three patients with posterior insular strokes; 4) cardiovascular disturbances, consisting of hypertensive episodes in a patient with a right posterior insular infarct; and 5) neuropsychological disorders, including aphasia (left posterior insula), dysarthria, and transient somatoparaphrenia (right posterior insula). Conclusion: Strokes restricted to the posterior insula may present with pseudothalamic sensory and vestibular-like syndromes as prominent clinical manifestations, but also dysarthria and aphasia (in left lesions), somatoparaphrenia (right lesions) and gustatory dysfunction and blood pressure with hypertensive episodes in right lesions; we did not find acute dysphagia reported in anterior, insular strokes.
Resumo:
RESUME GRAND PUBLICLe cerveau est composé de différents types cellulaires, dont les neurones et les astrocytes. Faute de moyens pour les observer, les astrocytes sont très longtemps restés dans l'ombre alors que les neurones, bénéficiant des outils ad hoc pour être stimulés et étudiés, ont fait l'objet de toutes les attentions. Le développement de l'imagerie cellulaire et des outils fluorescents ont permis d'observer ces cellules non électriquement excitables et d'obtenir des informations qui laissent penser que ces cellules sont loin d'être passives et participent activement au fonctionnement cérébral. Cette participation au fonctionnement cérébral se fait en partie par le biais de la libération de substances neuro-actives (appellées gliotransmetteurs) que les astrocytes libèrent à proximité des synapses permettant ainsi de moduler le fonctionnement neuronal. Cette libération de gliotransmetteurs est principalement causée par l'activité neuronale que les astrocytes sont capables de sentir. Néanmoins, nous savons encore peu de chose sur les propriétés précises de la libération des gliotransmetteurs. Comprendre les propriétés spatio-temporelles de cette libération est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. En utilisant des outils fluorescents récemment développés et en combinant différentes techniques d'imagerie cellulaire, nous avons pu obtenir des informations très précises sur la libération de ces gliotransmetteurs par les astrocytes. Nous avons ainsi confirmé que cette libération était un processus très rapide et qu'elle était contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit une organisation complexe de la machinerie supportant la libération des gliotransmetteurs. Cette organisation complexe semble être à la base de la libération extrêmement rapide des gliotransmetteurs. Cette rapidité de libération et cette complexité structurelle semblent indiquer que les astrocytes sont des cellules particulièrement adaptées à une communication rapide et qu'elles peuvent, au même titre que les neurones dont elles seraient les partenaires légitimes, participer à la transmission et à l'intégration de l'information cérébrale.RESUMEDe petites vésicules, les « SLMVs » ou « Synaptic Like MicroVesicles », exprimant des transporteurs vésiculaires du glutamate (VGluTs) et libérant du glutamate par exocytose régulée, ont récemment été décrites dans les astrocytes en culture et in situ. Néanmoins, nous savons peu de chose sur les propriétés précises de la sécrétion de ces SLMVs. Contrairement aux neurones, le couplage stimulussécrétion des astrocytes n'est pas basé sur l'ouverture des canaux calciques membranaires mais nécessite l'intervention de seconds messagers et la libération du calcium par le reticulum endoplasmique (RE). Comprendre les propriétés spatio-temporelles de la sécrétion astrocytaire est essentiel pour comprendre le mode de communication de ces cellules et leur implication dans la transmission de l'information cérébrale. Nous avons utilisé des outils fluorescents récemment développés pour étudier le recyclage des vésicules synaptiques glutamatergiques comme les colorants styryles et la pHluorin afin de pouvoir suivre la sécrétion des SLMVs à l'échelle de la cellule mais également à l'échelle des évènements. L'utilisation combinée de l'épifluorescence et de la fluorescence à onde évanescente nous a permis d'obtenir une résolution temporelle et spatiale sans précédent. Ainsi avons-nous confirmé que la sécrétion régulée des astrocytes était un processus très rapide (de l'ordre de quelques centaines de millisecondes). Nous avons découvert que cette sécrétion est contrôlée par des augmentations de calcium locales et rapides. Nous avons également décrit des compartiments cytosoliques délimités par le RE à proximité de la membrane plasmique et contenant les SLMVs. Cette organisation semble être à la base du couplage rapide entre l'activation des GPCRs et la sécrétion. L'existence de compartiments subcellulaires indépendants permettant de contenir les messagers intracellulaires et de limiter leur diffusion semble compenser de manière efficace la nonexcitabilité électrique des astrocytes. Par ailleurs, l'existence des différents pools de vésicules recrutés séquentiellement et fusionnant selon des modalités distinctes ainsi que l'existence de mécanismes permettant le renouvellement de ces pools lors de la stimulation suggèrent que les astrocytes peuvent faire face à une stimulation soutenue de leur sécrétion. Ces données suggèrent que la libération de gliotransmetteurs par exocytose régulée n'est pas seulement une propriété des astrocytes en culture mais bien le résultat d'une forte spécialisation de ces cellules pour la sécrétion. La rapidité de cette sécrétion donne aux astrocytes toutes les compétences pour pouvoir intervenir de manière active dans la transmission et l'intégration de l'information.ABSTRACTRecently, astrocytic synaptic like microvesicles (SLMVs), that express vesicular glutamate transporters (VGluTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Nevertheless, little is known about the specific properties of regulated secretion in astrocytes. Important differences may exist between astrocytic and neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We took advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses like styryl dyes and pHluorin in order to follow exocytosis and endocytosis of SLMVs at the level of the entire cell or at the level of single event. We combined epifluorescence and total internal reflection fluorescence imaging to investigate, with unprecedented temporal and spatial resolution, the events underlying the stimulus-secretion in astrocytes. We confirmed that exo-endocytosis process in astrocytes proceeds with a time course on the millisecond time scale. We discovered that SLMVs exocytosis is controlled by local and fast Ca2+ elevations; indeed submicrometer cytosolic compartments delimited by endoplasmic reticulum (ER) tubuli reaching beneath the plasma membrane and containing SLMVs. Such complex organization seems to support the fast stimulus-secretion coupling reported here. Independent subcellular compartments formed by ER, SLMVs and plasma membrane containing intracellular messengers and limiting their diffusion seem to compensate efficiently the non-electrical excitability of astrocytes. Moreover, the existence of two pools of SLMVs which are sequentially recruited suggests a compensatory mechanisms allowing the refill of SLMVs and supporting exocytosis process over a wide range of multiple stimuli. These data suggest that regulated secretion is not only a feature of cultured astrocytes but results from a strong specialization of these cells. The rapidity of secretion demonstrates that astrocytes are able to actively participate in brain information transmission and processing.
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.