989 resultados para Parallel version
Resumo:
Purpose: To evaluate the psychometric properties of a Chinese version of the Diabetes Coping Measure (DCM-C) scale.----- Methods: A self-administered questionnaire was completed by 205 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Confirmatory factor analysis, criterion validity, and internal consistency reliability were conducted to evaluate the psychometric properties of the DCM-C.----- Findings: Confirmatory factor analysis confirmed a four-factor structure (χ2 /df ratio=1.351, GFI=.904, CFI=.902, RMSEA=.041). The DCM-C was significantly associated with HbA1c and diabetes self-care behaviors. Internal consistency reliability of the total DCM-C scale was .74. Cronbach’s alpha coefficients for each subscale of the DCM-C ranged from .37 (tackling spirit) to .66 (diabetes integration).----- Conclusions: The DCM-C demonstrated satisfactory reliability and validity to determine the use of diabetes coping strategies. The tackling spirit dimension needs further refinement when applies this scale to Chinese populations with diabetes.----- Clinical Relevance: Healthcare providers who deal with Chinese people with diabetes can use the DCM-C to implement an early determination of diabetes coping strategies.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Background Wandering represents a major problem in the management of patients with Alzheimer’s disease (AD). In this study we examined the utility of the Algase Wandering Scale (AWS), a newly developed psychometric instrument that asks caregivers to assess the likelihood of wandering behavior. Methods The AWS was administered to the caregivers of 40 AD patients and total and subscale scores were examined in relation to measures of mental and functional status, depressive symptoms and medication usage. Results AWS scores were comparable, though slightly lower, than those normative values previously published. Higher scores were associated with more severe dementia. The Negative Outcome subscale showed a significant increase in reported falls or injuries in association with anti-depressant use. Conclusions These data provide some construct validation for the AWS as a potentially useful scale to assess wandering behaviors in AD.
Resumo:
This study examined the psychometric properties of an expanded version of the Algase Wandering Scale (Version 2) (AWS-V2) in a cross-cultural sample. A cross-sectional survey design was used. Study subjects were 172 English-speaking persons with dementia (PWD) from long-term care facilities in the USA, Canada, and Australia. Two or more facility staff rated each subject on the AWS-V2. Demographic and cognitive data (MMSE) were also obtained. Staff provided information on their own knowledge of the subject and of dementia. Separate factor analyses on data from two samples of raters each explained greater than 66% of the variance in AWS-V2 scores and validated four (persistent walking, navigational deficit, eloping behavior, and shadowing) of five factors in the original scale. Items added to create the AWS-V2 strengthened the shadowing subscale, failed to improve the routinized walking subscale, and added a factor, attention shifting as compared to the original AWS. Evidence for validity was found in significant correlations and ANOVAs between the AWS-V2 and most subscales with a single item indicator of wandering and with the MMSE. Evidence of reliability was shown by internal consistency of the AWS-V2 (0.87, 0.88) and its subscales (range 0.88 to 0.66), with Kappa for individual items (17 of 27 greater than 0.4), and ANOVAs comparing ratings across rater groups (nurses, nurse aids, and other staff). Analyses support validity and reliability of the AWS-V2 overall and for persistent walking, spatial disorientation, and eloping behavior subscales. The AWS-V2 and its subscales are an appropriate way to measure wandering as conceptualized within the Need-driven Dementia-compromised Behavior Model in studies of English-speaking subjects. Suggestions for further strengthening the scale and for extending its use to clinical applications are described.
Resumo:
The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and P4 classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.
Resumo:
OBJECTIVE To examine the psychometric properties of a Chinese version of the Problem Areas In Diabetes (PAID-C) scale. RESEARCH DESIGN AND METHODS The reliability and validity of the PAID-C were evaluated in a convenience sample of 205 outpatients with type 2 diabetes. Confirmatory factor analysis, Bland-Altman analysis, and Spearman's correlations facilitated the psychometric evaluation. RESULTS Confirmatory factor analysis confirmed a one-factor structure of the PAID-C (χ2/df ratio = 1.894, goodness-of-fit index = 0.901, comparative fit index = 0.905, root mean square error of approximation = 0.066). The PAID-C was associated with A1C (rs = 0.15; P < 0.05) and diabetes self-care behaviors in general diet (rs = −0.17; P < 0.05) and exercise (rs = −0.17; P < 0.05). The 4-week test-retest reliability demonstrated satisfactory stability (rs = 0.83; P < 0.01). CONCLUSIONS The PAID-C is a reliable and valid measure to determine diabetes-related emotional distress in Chinese people with type 2 diabetes.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and IV classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving linear systems with SSE and discuss advantages and disadvantages of this approach based on our experimental study.
Resumo:
Symmetric multi-processor (SMP) systems, or multiple-CPU servers, are suitable for implementing parallel algorithms because they employ dedicated communication devices to enhance the inter-processor communication bandwidth, so that a better performance can be obtained. However, the cost for a multiple-CPU server is high and therefore, the server is usually shared among many users. The work-load due to other users will certainly affect the performance of the parallel programs so it is desirable to derive a method to optimize parallel programs under different loading conditions. In this paper, we present a simple method, which can be applied in SPMD type parallel programs, to improve the speedup by controlling the number of threads within the programs.
Resumo:
The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.