970 resultados para Parallel programming
Resumo:
Transactional memory (TM) is a new synchronization mechanism devised to simplify parallel programming, thereby helping programmers to unleash the power of current multicore processors. Although software implementations of TM (STM) have been extensively analyzed in terms of runtime performance, little attention has been paid to an equally important constraint faced by nearly all computer systems: energy consumption. In this work we conduct a comprehensive study of energy and runtime tradeoff sin software transactional memory systems. We characterize the behavior of three state-of-the-art lock-based STM algorithms, along with three different conflict resolution schemes. As a result of this characterization, we propose a DVFS-based technique that can be integrated into the resolution policies so as to improve the energy-delay product (EDP). Experimental results show that our DVFS-enhanced policies are indeed beneficial for applications with high contention levels. Improvements of up to 59% in EDP can be observed in this scenario, with an average EDP reduction of 16% across the STAMP workloads. © 2012 IEEE.
Resumo:
Software transaction memory (STM) systems have been used as an approach to improve performance, by allowing the concurrent execution of atomic blocks. However, under high-contention workloads, STM-based systems can considerably degrade performance, as transaction conflict rate increases. Contention management policies have been used as a way to select which transaction to abort when a conflict occurs. In general, contention managers are not capable of avoiding conflicts, as they can only select which transaction to abort and the moment it should restart. Since contention managers act only after a conflict is detected, it becomes harder to effectively increase transaction throughput. More proactive approaches have emerged, aiming at predicting when a transaction is likely to abort, postponing its execution. Nevertheless, most of the proposed proactive techniques are limited, as they do not replace the doomed transaction by another or, when they do, they rely on the operating system for that, having little or no control on which transaction to run. This article proposes LUTS, a lightweight user-level transaction scheduler. Unlike other techniques, LUTS provides the means for selecting another transaction to run in parallel, thus improving system throughput. We discuss LUTS design and propose a dynamic conflict-avoidance heuristic built around its scheduling capabilities. Experimental results, conducted with the STAMP and STMBench7 benchmark suites, running on TinySTM and SwissTM, show how our conflict-avoidance heuristic can effectively improve STM performance on high contention applications. © 2012 Springer Science+Business Media, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho apresentamos a solução do campo eletromagnético gerado por um dipolo elétrico horizontal em meios transversalmente isotrópicos com eixo de simetria vertical (TIV) e com eixo de simetria inclinado (TII). Para modelos unidimensionais, o campo eletromagnético foi obtido por duas metodologias distintas: (1) solução semi-analítica das equações de Maxwell com auxílio de potenciais vetores no caso TIV e (2) em modelos com anisotropia transversal inclinada o campo eletromagnético foi separado em primário e secundário, e então, o campo secundário foi calculado pelo método de elementos finitos no domínio (kx, ky, z) da transformada de Fourier. Para estruturas bidimensionais, foi aplicada a mesma metodologia usado nos modelos TII unidimensionais, onde o campo secundário foi calculado pelo método de elementos finitos no domínio (x, ky, z), da transformada de Fourier, com a utilização de malhas não estruturadas para discretização dos modelos. Estas respostas foram usados para avaliar os efeitos da anisotropia elétrica nos dados CSEM marinho 1D e 2,5D.
Resumo:
This work presents a study about the use of standards and directions on parallel programming in distributed systems, using the MPI standard and PETSc toolkit, performing an analysis of their performances over certain mathematic operations involving matrices. The concepts are used to develop applications to solve problems involving Principal Components Analysis (PCA), which are executed in a Beowulf cluster. The results are compared to the ones of an analogous application with sequencial execution, and then it is analized if there was any performance boost on the parallel application
Resumo:
Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.
Resumo:
I moderni sistemi embedded sono equipaggiati con risorse hardware che consentono l’esecuzione di applicazioni molto complesse come il decoding audio e video. La progettazione di simili sistemi deve soddisfare due esigenze opposte. Da un lato è necessario fornire un elevato potenziale computazionale, dall’altro bisogna rispettare dei vincoli stringenti riguardo il consumo di energia. Uno dei trend più diffusi per rispondere a queste esigenze opposte è quello di integrare su uno stesso chip un numero elevato di processori caratterizzati da un design semplificato e da bassi consumi. Tuttavia, per sfruttare effettivamente il potenziale computazionale offerto da una batteria di processoriè necessario rivisitare pesantemente le metodologie di sviluppo delle applicazioni. Con l’avvento dei sistemi multi-processore su singolo chip (MPSoC) il parallel programming si è diffuso largamente anche in ambito embedded. Tuttavia, i progressi nel campo della programmazione parallela non hanno mantenuto il passo con la capacità di integrare hardware parallelo su un singolo chip. Oltre all’introduzione di multipli processori, la necessità di ridurre i consumi degli MPSoC comporta altre soluzioni architetturali che hanno l’effetto diretto di complicare lo sviluppo delle applicazioni. Il design del sottosistema di memoria, in particolare, è un problema critico. Integrare sul chip dei banchi di memoria consente dei tempi d’accesso molto brevi e dei consumi molto contenuti. Sfortunatamente, la quantità di memoria on-chip che può essere integrata in un MPSoC è molto limitata. Per questo motivo è necessario aggiungere dei banchi di memoria off-chip, che hanno una capacità molto maggiore, come maggiori sono i consumi e i tempi d’accesso. La maggior parte degli MPSoC attualmente in commercio destina una parte del budget di area all’implementazione di memorie cache e/o scratchpad. Le scratchpad (SPM) sono spesso preferite alle cache nei sistemi MPSoC embedded, per motivi di maggiore predicibilità, minore occupazione d’area e – soprattutto – minori consumi. Per contro, mentre l’uso delle cache è completamente trasparente al programmatore, le SPM devono essere esplicitamente gestite dall’applicazione. Esporre l’organizzazione della gerarchia di memoria ll’applicazione consente di sfruttarne in maniera efficiente i vantaggi (ridotti tempi d’accesso e consumi). Per contro, per ottenere questi benefici è necessario scrivere le applicazioni in maniera tale che i dati vengano partizionati e allocati sulle varie memorie in maniera opportuna. L’onere di questo compito complesso ricade ovviamente sul programmatore. Questo scenario descrive bene l’esigenza di modelli di programmazione e strumenti di supporto che semplifichino lo sviluppo di applicazioni parallele. In questa tesi viene presentato un framework per lo sviluppo di software per MPSoC embedded basato su OpenMP. OpenMP è uno standard di fatto per la programmazione di multiprocessori con memoria shared, caratterizzato da un semplice approccio alla parallelizzazione tramite annotazioni (direttive per il compilatore). La sua interfaccia di programmazione consente di esprimere in maniera naturale e molto efficiente il parallelismo a livello di loop, molto diffuso tra le applicazioni embedded di tipo signal processing e multimedia. OpenMP costituisce un ottimo punto di partenza per la definizione di un modello di programmazione per MPSoC, soprattutto per la sua semplicità d’uso. D’altra parte, per sfruttare in maniera efficiente il potenziale computazionale di un MPSoC è necessario rivisitare profondamente l’implementazione del supporto OpenMP sia nel compilatore che nell’ambiente di supporto a runtime. Tutti i costrutti per gestire il parallelismo, la suddivisione del lavoro e la sincronizzazione inter-processore comportano un costo in termini di overhead che deve essere minimizzato per non comprometterre i vantaggi della parallelizzazione. Questo può essere ottenuto soltanto tramite una accurata analisi delle caratteristiche hardware e l’individuazione dei potenziali colli di bottiglia nell’architettura. Una implementazione del task management, della sincronizzazione a barriera e della condivisione dei dati che sfrutti efficientemente le risorse hardware consente di ottenere elevate performance e scalabilità. La condivisione dei dati, nel modello OpenMP, merita particolare attenzione. In un modello a memoria condivisa le strutture dati (array, matrici) accedute dal programma sono fisicamente allocate su una unica risorsa di memoria raggiungibile da tutti i processori. Al crescere del numero di processori in un sistema, l’accesso concorrente ad una singola risorsa di memoria costituisce un evidente collo di bottiglia. Per alleviare la pressione sulle memorie e sul sistema di connessione vengono da noi studiate e proposte delle tecniche di partizionamento delle strutture dati. Queste tecniche richiedono che una singola entità di tipo array venga trattata nel programma come l’insieme di tanti sotto-array, ciascuno dei quali può essere fisicamente allocato su una risorsa di memoria differente. Dal punto di vista del programma, indirizzare un array partizionato richiede che ad ogni accesso vengano eseguite delle istruzioni per ri-calcolare l’indirizzo fisico di destinazione. Questo è chiaramente un compito lungo, complesso e soggetto ad errori. Per questo motivo, le nostre tecniche di partizionamento sono state integrate nella l’interfaccia di programmazione di OpenMP, che è stata significativamente estesa. Specificamente, delle nuove direttive e clausole consentono al programmatore di annotare i dati di tipo array che si vuole partizionare e allocare in maniera distribuita sulla gerarchia di memoria. Sono stati inoltre sviluppati degli strumenti di supporto che consentono di raccogliere informazioni di profiling sul pattern di accesso agli array. Queste informazioni vengono sfruttate dal nostro compilatore per allocare le partizioni sulle varie risorse di memoria rispettando una relazione di affinità tra il task e i dati. Più precisamente, i passi di allocazione nel nostro compilatore assegnano una determinata partizione alla memoria scratchpad locale al processore che ospita il task che effettua il numero maggiore di accessi alla stessa.
Resumo:
Although studies of a number of parallel implementations of logic programming languages are now available, their results are difficult to interpret due to the multiplicity of factors involved, the effect of each of which is difficult to sepárate. In this paper we present the results of a high-level simulation study of or- and independent and-parallelism with a wide selection of Prolog programs that aims to determine the intrinsic amount of parallelism, independently of implementation factors, thus facilitating this separation. We expect this study will be instrumental in better understanding and comparing results from actual implementations, as shown by some examples provided in the paper. In addition, the paper examines some of the issues and tradeoffs associated with the combination of and- and or-parallelism and proposes reasonable solutions based on the simulation data obtained.
Resumo:
A raíz de la aparición de los procesadores dotados de varios “cores”, la programación paralela, un concepto que, por otra parte no era nada nuevo y se conocía desde hace décadas, sufrió un nuevo impulso, pues se creía que se podía superar el techo tecnológico que había estado limitando el rendimiento de esta programación durante años. Este impulso se ha ido manteniendo hasta la actualidad, movido por la necesidad de sistemas cada vez más potentes y gracias al abaratamiento de los costes de fabricación. Esta tendencia ha motivado la aparición de nuevo software y lenguajes con componentes orientados precisamente al campo de la programación paralela. Este es el caso del lenguaje Go, desarrollado por Google y lanzado en 2009. Este lenguaje se basa en modelos de concurrencia que lo hacen muy adecuados para abordar desarrollos de naturaleza paralela. Sin embargo, la programación paralela es un campo complejo y heterogéneo, y los programadores son reticentes a utilizar herramientas nuevas, en beneficio de aquellas que ya conocen y les son familiares. Un buen ejemplo son aquellas implementaciones de lenguajes conocidos, pero orientadas a programación paralela, y que siguen las directrices de un estándar ampliamente reconocido y aceptado. Este es el caso del estándar OpenMP, un Interfaz de Programación de Aplicaciones (API) flexible, portable y escalable, orientado a la programación paralela multiproceso en arquitecturas multi-core o multinucleo. Dicho estándar posee actualmente implementaciones en los lenguajes C, C++ y Fortran. Este proyecto nace como un intento de aunar ambos conceptos: un lenguaje emergente con interesantes posibilidades en el campo de la programación paralela, y un estándar reputado y ampliamente extendido, con el que los programadores se encuentran familiarizados. El objetivo principal es el desarrollo de un conjunto de librerías del sistema (que engloben directivas de compilación o pragmas, librerías de ejecución y variables de entorno), soportadas por las características y los modelos de concurrencia propios de Go; y que añadan funcionalidades propias del estándar OpenMP. La idea es añadir funcionalidades que permitan programar en lenguaje Go utilizando la sintaxis que OpenMP proporciona para otros lenguajes, como Fortan y C/C++ (concretamente, similar a esta última), y, de esta forma, dotar al usuario de Go de herramientas para programar estructuras de procesamiento paralelo de forma sencilla y transparente, de la misma manera que lo haría utilizando C/C++.---ABSTRACT---As a result of the appearance of processors equipped with multiple "cores ", parallel programming, a concept which, moreover, it was not new and it was known for decades, suffered a new impulse, because it was believed they could overcome the technological ceiling had been limiting the performance of this program for years. This impulse has been maintained until today, driven by the need for ever more powerful systems and thanks to the decrease in manufacturing costs. This trend has led to the emergence of new software and languages with components guided specifically to the field of parallel programming. This is the case of Go language, developed by Google and released in 2009. This language is based on concurrency models that make it well suited to tackle developments in parallel nature. However, parallel programming is a complex and heterogeneous field, and developers are reluctant to use new tools to benefit those who already know and are familiar. A good example are those implementations from well-known languages, but parallel programming oriented, and witch follow the guidelines of a standard widely recognized and accepted. This is the case of the OpenMP standard, an application programming interface (API), flexible, portable and scalable, parallel programming oriented, and designed for multi-core architectures. This standard currently has implementations in C, C ++ and Fortran. This project was born as an attempt to combine two concepts: an emerging language, with interesting possibilities in the field of parallel programming, and a reputed and widespread standard, with which programmers are familiar with. The main objective is to develop a set of system libraries (which includes compiler directives or pragmas, runtime libraries and environment variables), supported by the characteristics and concurrency patterns of Go; and that add custom features from the OpenMP standard. The idea is to add features that allow programming in Go language using the syntax OpenMP provides for other languages, like Fortran and C / C ++ (specifically, similar to the latter ), and, in this way, provide Go users with tools for programming parallel structures easily and, in the same way they would using C / C ++.
Resumo:
Data processing services for Meteosat geostationary satellite are presented. Implemented services correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional Brownian motion models.
Resumo:
Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.
Resumo:
In this paper we advocate the Loop-of-stencil-reduce pattern as a way to simplify the parallel programming of heterogeneous platforms (multicore+GPUs). Loop-of-Stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop. It transparently targets (by using OpenCL) combinations of CPU cores and GPUs, and it makes it possible to simplify the deployment of a single stencil computation kernel on different GPUs. The paper discusses the implementation of Loop-of-stencil-reduce within the FastFlow parallel framework, considering a simple iterative data-parallel application as running example (Game of Life) and a highly effective parallel filter for visual data restoration to assess performance. Thanks to the high-level design of the Loop-of-stencil-reduce, it was possible to run the filter seamlessly on a multicore machine, on multi-GPUs, and on both.
Resumo:
The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations,computing clusters and distributed cloud appliances.