909 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality
Resumo:
Xenobiotic exposure is a risk factor in the etiology of neurodegenerative disease. It was recently hypothesized that restricted exposure during brain development could predispose for a neurodegenerative disease later in life. As neuroinflammation contributes to progressive neurodegeneration, it is suspected that neurodevelopmental xenobiotic exposure could elicit a neuroinflammatory process, which over time may assume a detrimental character. We investigated the neurotoxic effects of paraquat (PQ) in three-dimensional whole rat brain cell cultures, exposed during an early differentiation stage, comparing immediate effects-directly post exposure-with long-term effects, 20 days after interrupted PQ-administration. Adverse effects and neuroinflammatory responses were assessed by measuring changes in gene- and protein-expression as well as by determining cell morphology changes. Differentiating neural cultures were highly susceptible to PQ and showed neuronal damage and strong astrogliosis. After the 20-day washout period, neurons partially recovered, whereas astrogliosis persisted, and was accompanied by microglial activation of a neurodegenerative phenotype. Our data shows that immediate and long-term effects of subchronic PQ-exposure differ. Also, PQ-exposure during this window of extensive neuronal differentiation led to a delayed microglial activation, of a character that could promote further pro-inflammatory signals that enable prolonged inflammation, thereby fueling further neurodegeneration.
Resumo:
PURPOSE: In the present study, the impact of the two different fat suppression techniques was investigated for free breathing 3D spiral coronary magnetic resonance angiography (MRA). As the coronary arteries are embedded in epicardial fat and are adjacent to myocardial tissue, magnetization preparation such as T(2)-preparation and fat suppression is essential for coronary discrimination. MATERIALS AND METHODS: Fat-signal suppression in three-dimensional (3D) thin- slab coronary MRA based on a spiral k-space data acquisition can either be achieved by signal pre-saturation using a spectrally selective inversion recovery pre-pulse or by spectral-spatial excitation. In the present study, the performance of the two different approaches was studied in healthy subjects. RESULTS: No significant objective or subjective difference was found between the two fat suppression approaches. CONCLUSION: Spectral pre-saturation seems preferred for coronary MRA applications due to the ease of implementation and the shorter cardiac acquisition window.
Resumo:
Rats, like other crepuscular animals, have excellent auditory capacities and they discriminate well between different sounds [Heffner HE, Heffner RS, Hearing in two cricetid rodents: wood rats (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 1985;99(3):275-88]. However, most experimental literature concerning spatial orientation almost exclusively emphasizes the use of visual landmarks [Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 1997;17(7):2531-42; and Goodridge JP, Taube JS. Preferential use of the landmark navigational system by head direction cells in rats. Behav Neurosci 1995;109(1):49-61]. To address the important issue of whether rats are able to achieve a place navigation task relative to auditory beacons, we designed a place learning task in the water maze. We controlled cue availability by conducting the experiment in total darkness. Three auditory cues did not allow place navigation whereas three visual cues in the same positions did support place navigation. One auditory beacon directly associated with the goal location did not support taxon navigation (a beacon strategy allowing the animal to find the goal just by swimming toward the cue). Replacing the auditory beacons by one single visual beacon did support taxon navigation. A multimodal configuration of two auditory cues and one visual cue allowed correct place navigation. The deletion of the two auditory or of the one visual cue did disrupt the spatial performance. Thus rats can combine information from different sensory modalities to achieve a place navigation task. In particular, auditory cues support place navigation when associated with a visual one.
Resumo:
PURPOSE: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. METHODS AND MATERIALS: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. RESULTS: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. CONCLUSION: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
It has been shown that it is possible to generate perceptual illusions of ownership in immersive virtual reality (IVR) over a virtual body seen from first person perspective, in other words over a body that visually substitutes the person's real body. This can occur even when the virtual body is quite different in appearance from the person's real body. However, investigation of the psychological, behavioral and attitudinal consequences of such body transformations remains an interesting problem with much to be discovered. Thirty six Caucasian people participated in a between-groups experiment where they played a West-African Djembe hand drum while immersed in IVR and with a virtual body that substituted their own. The virtual hand drum was registered with a physical drum. They were alongside a virtual character that played a drum in a supporting, accompanying role. In a baseline condition participants were represented only by plainly shaded white hands, so that they were able merely to play. In the experimental condition they were represented either by a casually dressed dark-skinned virtual body (Casual Dark-Skinned - CD) or by a formal suited light-skinned body (Formal Light-Skinned - FL). Although participants of both groups experienced a strong body ownership illusion towards the virtual body, only those with the CD representation showed significant increases in their movement patterns for drumming compared to the baseline condition and compared with those embodied in the FL body. Moreover, the stronger the illusion of body ownership in the CD condition, the greater this behavioral change. A path analysis showed that the observed behavioral changes were a function of the strength of the illusion of body ownership towards the virtual body and its perceived appropriateness for the drumming task. These results demonstrate that full body ownership illusions can lead to substantial behavioral and possibly cognitive changes depending on the appearance of the virtual body. This could be important for many applications such as learning, education, training, psychotherapy and rehabilitation using IVR.
Resumo:
Recent studies have shown that a fake body part can be incorporated into human body representation through synchronous multisensory stimulation on the fake and corresponding real body part- the most famous example being the Rubber Hand Illusion. However, the extent to which gross asymmetries in the fake body can be assimilated remains unknown. Participants experienced, through a head-tracked stereo head-mounted display a virtual body coincident with their real body. There were 5 conditions in a between-groups experiment, with 10 participants per condition. In all conditions there was visuo-motor congruence between the real and virtual dominant arm. In an Incongruent condition (I), where the virtual arm length was equal to the real length, there was visuo-tactile incongruence. In four Congruent conditions there was visuo-tactile congruence, but the virtual arm lengths were either equal to (C1), double (C2), triple (C3) or quadruple (C4) the real ones. Questionnaire scores and defensive withdrawal movements in response to a threat showed that the overall level of ownership was high in both C1 and I, and there was no significant difference between these conditions. Additionally, participants experienced ownership over the virtual arm up to three times the length of the real one, and less strongly at four times the length. The illusion did decline, however, with the length of the virtual arm. In the C2-C4 conditions although a measure of proprioceptive drift positively correlated with virtual arm length, there was no correlation between the drift and ownership of the virtual arm, suggesting different underlying mechanisms between ownership and drift. Overall, these findings extend and enrich previous results that multisensory and sensorimotor information can reconstruct our perception of the body shape, size and symmetry even when this is not consistent with normal body proportions.
Resumo:
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on fi eld data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unifi cation of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call"plausibility"- including the fi delity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram"s 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.
Resumo:
Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area.
Resumo:
What does it feel like to own, to control, and to be inside a body? The multidimensional nature of this experience together with the continuous presence of one's biological body, render both theoretical and experimental approaches problematic. Nevertheless, exploitation of immersive virtual reality has allowed a reframing of this question to whether it is possible to experience the same sensations towards a virtual body inside an immersive virtual environment as toward the biological body, and if so, to what extent. The current paper addresses these issues by referring to the Sense of Embodiment (SoE). Due to the conceptual confusion around this sense, we provide a working definition which states that SoE consists of three subcomponents: the sense of self-location, the sense of agency, and the sense of body ownership. Under this proposed structure, measures and experimental manipulations reported in the literature are reviewed and related challenges are outlined. Finally, future experimental studies are proposed to overcome those challenges, toward deepening the concept of SoE and enhancing it in virtual applications.
Resumo:
Altering the normal association between touch and its visual correlate can result in the illusory perception of a fake limb as part of our own body. Thus, when touch is seen to be applied to a rubber hand while felt synchronously on the corresponding hidden real hand, an illusion of ownership of the rubber hand usually occurs. The illusion has also been demonstrated using visuomotor correlation between the movements of the hidden real hand and the seen fake hand. This type of paradigm has been used with respect to the whole body generating out-of-the-body and body substitution illusions. However, such studies have only ever manipulated a single factor and although they used a form of virtual reality have not exploited the power of immersive virtual reality (IVR) to produce radical transformations in body ownership.
Resumo:
Background Virtual reality (VR) simulation is increasingly used in surgical disciplines. Since VR simulators measure multiple outcomes, standardized reporting is needed. Methods We present an algorithm for combining multiple VR outcomes into dimension summary measures, which are then integrated into a meaningful total score. We reanalyzed the data of two VR studies applying the algorithm. Results The proposed algorithm was successfully applied to both VR studies. Conclusions The algorithm contributes to standardized and transparent reporting in VR-related research.
Resumo:
Cognitive neuroscientists have discovered various experimental setups that suggest that our body representation is surprisingly flexible, where the brain can easily be tricked into the illusion that a rubber hand is your hand or that a manikin body is your body. These multisensory illusions work well in immersive virtual reality (IVR). What is even more surprising is that such embodiment induces perceptual, attitudinal and behavioural changes that are concomitant with the displayed body type. Here we outline some recent findings in this field, and suggest that this offers a powerful tool for neuroscience, psychology and a new path for IVR.