942 resultados para Pancreatic neoplasms
Resumo:
increasing prevalence of obesity combined with longevity will produce an epidemic of Type 2 (non-insulin-dependent) diabetes in the next 20 years. This. disease is associated with defects in insulin secretion, specifically abnormalities of insulin secretory kinetics and pancreatic beta-cell glucose responsiveness. Mechanisms underlying beta-cell dysfunction include glucose toxicity, lipotoxicity and beta-cell hyperactivity. Defects at various sites in beta-cell signal transduction pathways contribute, but no single lesion can account for the common form of Type 2 diabetes. Recent studies highlight diverse beta-cell actions of GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic polypeptide). These intestinal hormones target the beta-cell to stimulate glucose-dependent insulin secretion through activation of protein kinase A and associated pathways. Both increase gene expression and proinsulin biosynthesis, protect against apoptosis and stimulate replication/neogenesis of beta-cells. Incretin hormones therefore represent an exciting future multi-action solution to correct beta-cell defect in Type 2 diabetes.
Resumo:
JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.
Resumo:
Numerous epidemiological studies have examined the association between physical activity and pancreatic cancer; however, findings from individual cohorts have largely not corroborated a protective effect. Among other plausible mechanisms, physical activity may reduce abdominal fat depots inducing metabolic improvements in glucose tolerance and insulin sensitivity, thereby potentially attenuating pancreatic cancer risk. We performed a systematic review to examine associations between physical activity and pancreatic cancer. Six electronic databases were searched from their inception through July 2009, including MEDLINE and EMBASE, seeking observational studies examining any physical activity measure with pancreatic cancer incidence/mortality as an outcome. A random effects model was used to pool individual effect estimates evaluating highest vs. lowest categories of activity. Twenty-eight studies were included. Pooled estimates indicated a reduction in pancreatic cancer risk with higher levels of total (five prospective studies, RR: 0.72, 95% CI: 0.52-0.99) and occupational activity (four prospective studies, RR: 0.75, 95% CI: 0.59-0.96). Nonsignificant inverse associations were seen between risks and recreational and transport physical activity. When examining exercise intensity, moderate activity appeared more protective (RR: 0.79, 95% CI: 0.52-1.20) than vigorous activity (RR: 0.97, 95% CI: 0.85-1.11), but results were not statistically significant and the former activity variable incorporated marked heterogeneity. Despite indications of an inverse relationship with higher levels of work and total activity, there was little evidence of such associations with recreational and other activity exposures.