434 resultados para Pahs
Resumo:
The aim of this study was to determine if the soils, waters and plants from the Aliaga dump contained polycyclic aromatic hydrocarbons (PAHs) and their quantification.The results showed that PAHs concentrations in soils are in general higher than the reference levels from the Spanish legislation. Waters and plants contained PAHs but in low concentrations. The possible actions for remediation (photodegradation and bioremediation) seem to be unviable here because of the large volume of materials involved, although its use as an additive for the cement industry and derivatives can be considered. It is proposed that fluorantene in waters, and phenanthrene and benzo[ghi]perilene in soils be considered as pollutants as well as to study the incorporation of PAHs to plants. Key-words: Polycyclic aromatic hydrocarbons, soil, plant and water contamination, fly- ash, power plant. RESUMEN: El objetivo de este estudio fue determinar y cuantificar los hidrocarburos policíclicos aromáticos (PAHs) en los suelos, plantas y aguas de la Escombrera de Aliaga. La concentración de PAHs en las cenizas supera, en general, los valores establecidos en la legislación española.Las aguas y plantas contienen PAHs, aunque en concentraciones bajas. La remoción de los materiales para someterlos a fotodegradación y biorremediación es inviable debido al gran volumen de la escombrera, aunque se plantea su uso como aditivo en la fabricación de productos derivados del cemento. Se propone incluir el fenantreno y benzo[ghi]perileno en la normativa de suelos, así como el naftaleno en la de aguas y la elaboración de una legislación sobre la incorporación de estos compuestos a las plantas.
Resumo:
Resumen de la comunicación presentada en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.
Resumo:
Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV < 20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m(3) d(-1). SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The proximity of the Great Barrier Reef (GBR) Marine Park to areas of intensive agriculture and increasing urbanisation places the park under potential threat of contamination by land-based pollutants. Passive samplers were deployed at inshore reef and river mouth sites in the Wet Tropics region of the GBR during a dry and a wet season to measure levels of land-based organic pollutants in this environment. Two types of passive sampling devices were deployed: (i) a polar sampler, which can be used to monitor polar herbicides and (ii) semipermeable membrane devices (SPMDs) which sequester more hydrophobic compounds (e.g. PAHs, chlorpyrifos). Herbicides (diuron, simazine, atrazine, hexazinone and/or flumeturon) were detected at low concentrations (ng L-1) at all sites sampled and in both seasons. Chlorpyrifos was not detected while PAHs were present in SPMDs at levels below limits of detection. The results show that the GBR environment does contain low levels of organic pollutants and that passive sampling provides a sensitive monitoring tool for measuring waterborne organic pollutants. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the feasibility of using semipermeable membrane devices (SPMDs) and polyethylene-based passive sampler devices (PSDs) for monitoring PAHs in stormwater. Firstly, SPMDs were deployed at one site and SPMD-derived water concentrations were compared with water concentration measured from grab samples. In a subsequent deployment the performance of SPMDs and PSDs was compared. Finally PSDs of multiple surface area to volume ratios were used to compare PAH concentrations at the two sites. The results obtained in this study show that SPMDs can be used to measure the water concentration of PAHs with reasonable accuracy, when compared with grab samples collected at the same site. Importantly, several PAHs which could not be detected in a 10 L grab sample could be detected in the SPMDs. PSD and SPMD samplers produced similar results when deployed at the same site, with most estimated water concentrations within a factor of 1.5. The use of PSDs in multiple surface area to volume ratios proved to be an effective means of characterizing the uptake kinetics for PAHs in situ. Overall passive water samplers proved to be an efficient technique for monitoring PAHs in stormwater.
Novel use of thin polyethylene films on aluminium surfaces as an equilibrium sampler for PAHs in air
Resumo:
The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072 ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution.