910 resultados para PWM controller
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
he performance of an induction motor fed by PWM inverters is mainly determined by the harmonic contents of the output voltage. This paper presents a method of numerically calculating the harmonics in the output voltage waveform. Equal pulse-width modulation and siunsoidal PWM are studied. Analysis has been done for single-phase and three-phase bridge inverters. A systematic procedure is given for computing the harmonics and the results are. tabulated.
Resumo:
The implementation of three-phase sinusoidal pulse-width-modulated inverter control strategy using microprocessor is discussed in this paper. To save CPU time, the DMA technique is used for transferring the switching pattern from memory to the pulse amplifier and isolation circuits of individual thyristors in the inverter bridge. The method of controlling both voltage and frequency is discussed here.
Resumo:
The implementation of three-phase sinusoidal pulse-width-modulated inverter control strategy using microprocessor is discussed in this paper. To save CPU time, the DMA technique is used for transferring the switching pattern from memory to the pulse amplifier and isolation circuits of individual thyristors in the inverter bridge. The method of controlling both voltage and frequency is discussed here.
Resumo:
In this paper the problem of stabilization of systems by means of stable compensations is considered, and results are derived for systems using observer�controller structures, for systems using a cascade structure, and for nonlinear systems
Resumo:
Special switching sequences can be employed in space-vector-based generation of pulsewidth-modulated (PWM) waveforms for voltage-source inverters. These sequences involve switching a phase twice, switching the second phase once, and clamping the third phase in a subcycle. Advanced bus-clamping PWM (ABCPWM) techniques have been proposed recently that employ such switching sequences. This letter studies the spectral properties of the waveforms produced by these PWM techniques. Further, analytical closed-form expressions are derived for the total rms harmonic distortion due to these techniques. It is shown that the ABCPWM techniques lead to lower distortion than conventional space vector PWM and discontinuous PWM at higher modulation indexes. The findings are validated on a 2.2-kW constant $V/f$ induction motor drive and also on a 100-kW motor drive.
Resumo:
A simple, low-cost, constant frequency, analog controller is proposed for the front-end half-bridge rectifier of a single-phase transformerless UPS system to maintain near unity power factor at the input and zero dc-offset voltage at the output. The controller generates the required gating pulses by comparing the input current with a periodic, bipolar, linear carrier without sensing the input voltage. Two voltage controllers and a single integrator with reset are used to generate the required carrier. All the necessary control operations can be performed without using any PLL, multiplier and/or divider. The controller can be fabricated as a single integrated circuit. The control concept is validated through simulation and also experimentally on an 800W half-bridge rectifier. Experimental results are presented for ac-dc application, and also for ac-dc-ac UPS application with both sinusoidal and nonlinear loads. The simulation and experimental results agree well.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
A voltage source inverter-fed induction motor produces a pulsating torque due to application of nonsinusoidal voltages. Torque pulsation is strongly influenced by the pulsewidth modulation (PWM) method employed. Conventional space vector PWM (CSVPWM) is known to result in less torque ripple than sine-triangle PWM. This paper aims at further reduction in the pulsating torque by employing advanced bus-clamping switching sequences, which apply an active vector twice in a subcycle. This paper proposes a hybrid PWM technique which employs such advanced bus-clamping sequences in conjunction with a conventional switching sequence. The proposed hybrid PWM technique is shown to reduce the torque ripple considerably over CSVPWM along with a marginal reduction in current ripple.
Resumo:
A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Problems like windup or rollover arise in a PI controller working under saturation. Hence anti-windup schemes are necessary to minimize performance degradation.Similar situation may occur in a Proportional Resonant(PR)controller in the presence of a sustained error input.Several methods can be employed based on existing knowledge on PI controller to counter this problem.In this paper few such schemes are proposed and implemented in FPGA and MATLAB and from the obtained results their possible use and limitations have been studied.
Resumo:
This paper presents a robust fixed order H-2 controller design using Strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H-2 controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation.
Resumo:
A differential temperature controller is incorporated in a solar water heating system to study the influence of its set points on system performance. The effectiveness of the controller set points DeltaT ON and DeltaT OFF on the pump cycling and energy collection has been studied experimentally and the results are presented in this paper.
Resumo:
PMSM drive with high dynamic response is the attractive solution for servo applications like robotics, machine tools, electric vehicles. Vector control is widely accepted control strategy for PMSM control, which enables decoupled control of torque and flux, this improving the transient response of torque and speed. As the vector control demands exhaustive real time computations, so the present work is implemented using TI DSP 320C240. Presently position and speed controller have been successfully tested. The feedback information used is shaft (rotor) position from the incremental encoder and two motor currents. We conclude with the hope to extend the present experimental set up for further research related to PMSM applications.
Resumo:
Centred space vector PWM (CSVPWM) technique is popularly used for three level voltage source inverters. The reference voltage vector is synthesized by time-averaging of the three nearest voltage vectors produced by the inverter. Identifying the three voltage vectors, and calculation of the dwelling time for each vector are both computationally intensive. This paper analyses the process of PWM generation in CSVPWM. This analysis breaks up a three-level inverter into six different conceptual two level inverters in different regions of the fundamental cycle. Control of 3-level inverter is viewed as the control of the appropriate 2-level inverter. The analysis leads to a systematic simplification of the computations involved, finally resulting in a computationally efficient PWM algorithm. This algorithm exploits the equivalence between triangle comparison and space vector approaches to PWM generation. This algorithm does not involve any 3-phase/2-phase or 2-phase/3-phase transformation. This also does not involve any transformation from rectangular to polar coordinates, and vice versa. Further no evaluation of trigonometric functions is necessary. This algorithm also provides for the mitigation of DC neutral point unbalance, and is well suited to digital implementation. Simulation and experimental results are presented.