972 resultados para PVC and HDPE geomembranes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. This method can be applied on structures where x-ray tomography is impractical due to size, low contrast, or safety concerns. By taking many ultrasonic pulse velocity (UPV) readings through the object, an image of the internal velocity variations can be constructed. Air-coupled UPV can allow for more automated and rapid collection of data for tomography of concrete. This research aims to integrate recent developments in air-coupled ultrasonic measurements with advanced tomography technology and apply them to concrete structures. First, non-contact and semi-contact sensor systems are developed for making rapid and accurate UPV measurements through PVC and concrete test samples. A customized tomographic reconstruction program is developed to provide full control over the imaging process including full and reduced spectrum tomographs with percent error and ray density calculations. Finite element models are also used to determine optimal measurement configurations and analysis procedures for efficient data collection and processing. Non-contact UPV is then implemented to image various inclusions within 6 inch (152 mm) PVC and concrete cylinders. Although there is some difficulty in identifying high velocity inclusions, reconstruction error values were in the range of 1.1-1.7% for PVC and 3.6% for concrete. Based upon the success of those tests, further data are collected using non-contact, semi-contact, and full contact measurements to image 12 inch (305 mm) square concrete cross-sections with 1 inch (25 mm) reinforcing bars and 2 inch (51 mm) square embedded damage regions. Due to higher noise levels in collected signals, tomographs of these larger specimens show reconstruction error values in the range of 10-18%. Finally, issues related to the application of these techniques to full-scale concrete structures are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FORTEACERO S.A.S es una empresa con sede en Bogotá, creada en el año 2012 como filial de la empresa ESCAYOLA Ltda., dedicada a la fabricación de perfiles, masilla, pintura y comercialización de productos para la construcción liviana, dentro de los que se incluyen drywall, PVC y los elementos necesarios para su instalación. Por el crecimiento y dinamismo del mercado al cual pertenece esta empresa, la organización vio la necesidad de crear un plan de mercadeo para identificar a partir de este oportunidades y planes de acción, con el propósito de tener un mejor desempeño en el mercado mediante el incremento en ventas y reconocimiento para la empresa por parte de los clientes y los competidores. El objetivo de este plan de mercadeo es incrementar las ventas en un 28% por medio de estrategias que se describen puntualmente en este documento.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the results of the laboratory model tests and the numerical studies conducted on small diameter PVC pipes, buried in geocell reinforced sand beds. The aim of the study was to evaluate the suitability of the geocell reinforcement in protecting the underground utilities and buried pipelines. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Conversely, the performance of the subgrade soil was also found to be marginally influenced by the position of the pipe, even in the presence of the relatively stiff reinforcement system. Further, experimental results were validated with 3-dimensional numerical studies using FLAC(3D) (Fast Lagrangian Analysis of Continua in 3D). A good agreement in the measured pipe stain values were observed between the experimental and numerical studies. Numerical studies revealed that the geocells distribute the stresses in the lateral direction and thus reduce the pressure on the pipe. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blends of HDPE in more LDPE, with appropriate heat treatment, produce a dispersion of separate entities of HDPE in a matrix of LDPE. The system offered an especially favourable means of studying the deformation of melt-crystallized lamellae. It has been found that sheaf-like spherulites are transformed under tensile deformation into hourglass shapes i.e. a double cone aligned along the drawing direction with origin in the center of the object. This is a consequence of different modes of deformation according to the relation of an individual lamella to the tensile axis. The work shows that the lamellae have not undergone melting and recrystallization in the deformation process at room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.