948 resultados para PROCESSING TECHNIQUE
Diseño de algoritmos de guerra electrónica y radar para su implementación en sistemas de tiempo real
Resumo:
Esta tesis se centra en el estudio y desarrollo de algoritmos de guerra electrónica {electronic warfare, EW) y radar para su implementación en sistemas de tiempo real. La llegada de los sistemas de radio, radar y navegación al terreno militar llevó al desarrollo de tecnologías para combatirlos. Así, el objetivo de los sistemas de guerra electrónica es el control del espectro electomagnético. Una de la funciones de la guerra electrónica es la inteligencia de señales {signals intelligence, SIGINT), cuya labor es detectar, almacenar, analizar, clasificar y localizar la procedencia de todo tipo de señales presentes en el espectro. El subsistema de inteligencia de señales dedicado a las señales radar es la inteligencia electrónica {electronic intelligence, ELINT). Un sistema de tiempo real es aquel cuyo factor de mérito depende tanto del resultado proporcionado como del tiempo en que se da dicho resultado. Los sistemas radar y de guerra electrónica tienen que proporcionar información lo más rápido posible y de forma continua, por lo que pueden encuadrarse dentro de los sistemas de tiempo real. La introducción de restricciones de tiempo real implica un proceso de realimentación entre el diseño del algoritmo y su implementación en plataformas “hardware”. Las restricciones de tiempo real son dos: latencia y área de la implementación. En esta tesis, todos los algoritmos presentados se han implementado en plataformas del tipo field programmable gate array (FPGA), ya que presentan un buen compromiso entre velocidad, coste total, consumo y reconfigurabilidad. La primera parte de la tesis está centrada en el estudio de diferentes subsistemas de un equipo ELINT: detección de señales mediante un detector canalizado, extracción de los parámetros de pulsos radar, clasificación de modulaciones y localization pasiva. La transformada discreta de Fourier {discrete Fourier transform, DFT) es un detector y estimador de frecuencia quasi-óptimo para señales de banda estrecha en presencia de ruido blanco. El desarrollo de algoritmos eficientes para el cálculo de la DFT, conocidos como fast Fourier transform (FFT), han situado a la FFT como el algoritmo más utilizado para la detección de señales de banda estrecha con requisitos de tiempo real. Así, se ha diseñado e implementado un algoritmo de detección y análisis espectral para su implementación en tiempo real. Los parámetros más característicos de un pulso radar son su tiempo de llegada y anchura de pulso. Se ha diseñado e implementado un algoritmo capaz de extraer dichos parámetros. Este algoritmo se puede utilizar con varios propósitos: realizar un reconocimiento genérico del radar que transmite dicha señal, localizar la posición de dicho radar o bien puede utilizarse como la parte de preprocesado de un clasificador automático de modulaciones. La clasificación automática de modulaciones es extremadamente complicada en entornos no cooperativos. Un clasificador automático de modulaciones se divide en dos partes: preprocesado y el algoritmo de clasificación. Los algoritmos de clasificación basados en parámetros representativos calculan diferentes estadísticos de la señal de entrada y la clasifican procesando dichos estadísticos. Los algoritmos de localization pueden dividirse en dos tipos: triangulación y sistemas cuadráticos. En los algoritmos basados en triangulación, la posición se estima mediante la intersección de las rectas proporcionadas por la dirección de llegada de la señal. En cambio, en los sistemas cuadráticos, la posición se estima mediante la intersección de superficies con igual diferencia en el tiempo de llegada (time difference of arrival, TDOA) o diferencia en la frecuencia de llegada (frequency difference of arrival, FDOA). Aunque sólo se ha implementado la estimación del TDOA y FDOA mediante la diferencia de tiempos de llegada y diferencia de frecuencias, se presentan estudios exhaustivos sobre los diferentes algoritmos para la estimación del TDOA, FDOA y localización pasiva mediante TDOA-FDOA. La segunda parte de la tesis está dedicada al diseño e implementación filtros discretos de respuesta finita (finite impulse response, FIR) para dos aplicaciones radar: phased array de banda ancha mediante filtros retardadores (true-time delay, TTD) y la mejora del alcance de un radar sin modificar el “hardware” existente para que la solución sea de bajo coste. La operación de un phased array de banda ancha mediante desfasadores no es factible ya que el retardo temporal no puede aproximarse mediante un desfase. La solución adoptada e implementada consiste en sustituir los desfasadores por filtros digitales con retardo programable. El máximo alcance de un radar depende de la relación señal a ruido promedio en el receptor. La relación señal a ruido depende a su vez de la energía de señal transmitida, potencia multiplicado por la anchura de pulso. Cualquier cambio hardware que se realice conlleva un alto coste. La solución que se propone es utilizar una técnica de compresión de pulsos, consistente en introducir una modulación interna a la señal, desacoplando alcance y resolución. ABSTRACT This thesis is focused on the study and development of electronic warfare (EW) and radar algorithms for real-time implementation. The arrival of radar, radio and navigation systems to the military sphere led to the development of technologies to fight them. Therefore, the objective of EW systems is the control of the electromagnetic spectrum. Signals Intelligence (SIGINT) is one of the EW functions, whose mission is to detect, collect, analyze, classify and locate all kind of electromagnetic emissions. Electronic intelligence (ELINT) is the SIGINT subsystem that is devoted to radar signals. A real-time system is the one whose correctness depends not only on the provided result but also on the time in which this result is obtained. Radar and EW systems must provide information as fast as possible on a continuous basis and they can be defined as real-time systems. The introduction of real-time constraints implies a feedback process between the design of the algorithms and their hardware implementation. Moreover, a real-time constraint consists of two parameters: Latency and area of the implementation. All the algorithms in this thesis have been implemented on field programmable gate array (FPGAs) platforms, presenting a trade-off among performance, cost, power consumption and reconfigurability. The first part of the thesis is related to the study of different key subsystems of an ELINT equipment: Signal detection with channelized receivers, pulse parameter extraction, modulation classification for radar signals and passive location algorithms. The discrete Fourier transform (DFT) is a nearly optimal detector and frequency estimator for narrow-band signals buried in white noise. The introduction of fast algorithms to calculate the DFT, known as FFT, reduces the complexity and the processing time of the DFT computation. These properties have placed the FFT as one the most conventional methods for narrow-band signal detection for real-time applications. An algorithm for real-time spectral analysis for user-defined bandwidth, instantaneous dynamic range and resolution is presented. The most characteristic parameters of a pulsed signal are its time of arrival (TOA) and the pulse width (PW). The estimation of these basic parameters is a fundamental task in an ELINT equipment. A basic pulse parameter extractor (PPE) that is able to estimate all these parameters is designed and implemented. The PPE may be useful to perform a generic radar recognition process, perform an emitter location technique and can be used as the preprocessing part of an automatic modulation classifier (AMC). Modulation classification is a difficult task in a non-cooperative environment. An AMC consists of two parts: Signal preprocessing and the classification algorithm itself. Featurebased algorithms obtain different characteristics or features of the input signals. Once these features are extracted, the classification is carried out by processing these features. A feature based-AMC for pulsed radar signals with real-time requirements is studied, designed and implemented. Emitter passive location techniques can be divided into two classes: Triangulation systems, in which the emitter location is estimated with the intersection of the different lines of bearing created from the estimated directions of arrival, and quadratic position-fixing systems, in which the position is estimated through the intersection of iso-time difference of arrival (TDOA) or iso-frequency difference of arrival (FDOA) quadratic surfaces. Although TDOA and FDOA are only implemented with time of arrival and frequency differences, different algorithms for TDOA, FDOA and position estimation are studied and analyzed. The second part is dedicated to FIR filter design and implementation for two different radar applications: Wideband phased arrays with true-time delay (TTD) filters and the range improvement of an operative radar with no hardware changes to minimize costs. Wideband operation of phased arrays is unfeasible because time delays cannot be approximated by phase shifts. The presented solution is based on the substitution of the phase shifters by FIR discrete delay filters. The maximum range of a radar depends on the averaged signal to noise ratio (SNR) at the receiver. Among other factors, the SNR depends on the transmitted signal energy that is power times pulse width. Any possible hardware change implies high costs. The proposed solution lies in the use of a signal processing technique known as pulse compression, which consists of introducing an internal modulation within the pulse width, decoupling range and resolution.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.
Resumo:
MIMO techniques allow increasing wireless channel performance by decreasing the BER and increasing the channel throughput and in consequence are included in current mobile communication standards. MIMO techniques are based on benefiting the existence of multipath in wireless communications and the application of appropriate signal processing techniques. The singular value decomposition (SVD) is a popular signal processing technique which, based on the perfect channel state information (PCSI) knowledge at both the transmitter and receiver sides, removes inter-antenna interferences and improves channel performance. Nevertheless, the proximity of the multiple antennas at each front-end produces the so called antennas correlation effect due to the similarity of the various physical paths. In consequence, antennas correlation drops the MIMO channel performance. This investigation focuses on the analysis of a MIMO channel under transmitter-side antennas correlation conditions. First, antennas correlation is analyzed and characterized by the correlation coefficients. The analysis describes the relation between antennas correlation and the appearance of predominant layers which significantly affect the channel performance. Then, based on the SVD, pre- and post-processing is applied to remove inter-antenna interferences. Finally, bit- and power allocation strategies are applied to reach the best performance. The resulting BER reveals that antennas correlation effect diminishes the channel performance and that not necessarily all MIMO layers must be activated to obtain the best performance.
Resumo:
In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained
Resumo:
En ese trabajo se estudia la concentración de elementos traza tóxicos en los depósitos de lodos (relaves) abandonados por la industria minera en Almería (España), los suelos del entorno próximo y las plantas que los colonizan y representan una vía de incorporación de dichos elementos en la cadena trófica. La industria minera antigua dejó toda una serie de instalaciones abandonadas en diferentes zonas de Andalucía, entre las que destacan por presentar altos contenidos en metales, los depósitos de residuos en forma de lodos generados en el proceso de flotación. En este estudio se trata el caso concreto de los depósitos de lodos de Mina La Solana (Almócita, Almería), donde se ha realizado una caracterización geoquímica de los depósitos y de los suelos de su entorno, en función al contenido en algunos elementos traza. Se han caracterizado muestras de las plantas que enraízan en dichos residuos para determinar la concentración que presentan en los mismos elementos traza. Los resultados muestran que los lodos presentan altos contenidos en Pb (concentración media 6800 ppm) y Zn (concentración media 22 000 ppm). Estos elementos no aparecen en forma soluble en agua, los test de lixiviación dan valores de concentración muy bajos (≤10 ppm de Pb y ≤ 2 ppm de Zn). De la misma forma se ha determinado una concentración alta de los mismos elementos en los restos vegetales, con un valor del Pb hasta los 210 ppm y 1300 ppm de Zn. Este hecho pone de manifiesto la capacidad de las plantas para alterar la movilidad de los elementos presentes en el sustrato donde enraízan estableciéndose una transferencia hacia la cadena trófica.
Resumo:
In previous sea-surface variability studies, researchers have failed to utilise the full ERS-1 mission due to the varying orbital characteristics in each mission phase, and most have simply ignored the Ice and Geodetic phases. This project aims to introduce a technique which will allow the straightforward use of all orbital phases, regardless of orbit type. This technique is based upon single satellite crossovers. Unfortunately the ERS-1 orbital height is still poorly resolved (due to higher air drag and stronger gravitational effects) when compared with that of TOPEX/Poseidon (T/P), so to make best use of the ERS-1 crossover data corrections to the ERS-1 orbital heights are calculated by fitting a cubic-spline to dual-crossover residuals with T/P. This correction is validated by comparison of dual satellite crossovers with tide gauge data. The crossover processing technique is validated by comparing the extracted sea-surface variability information with that from T/P repeat pass data. The two data sets are then combined into a single consistent data set for analysis of sea-surface variability patterns. These patterns are simplified by the use of an empirical orthogonal function decomposition which breaks the signals into spatial modes which are then discussed separately. Further studies carried out on these data include an analysis of the characteristics of the annual signal, discussion of evidence for Rossby wave propagation on a global basis, and finally analysis of the evidence for global mean sea level rise.
Resumo:
This research develops a low cost remote sensing system for use in agricultural applications. The important features of the system are that it monitors the near infrared and it incorporates position and attitude measuring equipment allowing for geo-rectified images to be produced without the use of ground control points. The equipment is designed to be hand held and hence requires no structural modification to the aircraft. The portable remote sensing system consists of an inertia measurement unit (IMU), which is accelerometer based, a low-cost GPS device and a small format false colour composite digital camera. The total cost of producing such a system is below GBP 3000, which is far cheaper than equivalent existing systems. The design of the portable remote sensing device has eliminated bore sight misalignment errors from the direct geo-referencing process. A new processing technique has been introduced for the data obtained from these low-cost devices, and it is found that using this technique the image can be matched (overlaid) onto Ordnance Survey Master Maps at an accuracy compatible with precision agriculture requirements. The direct geo-referencing has also been improved by introducing an algorithm capable of correcting oblique images directly. This algorithm alters the pixels value, hence it is advised that image analysis is performed before image georectification. The drawback of this research is that the low-cost GPS device experienced bad checksum errors, which resulted in missing data. The Wide Area Augmented System (WAAS) correction could not be employed because the satellites could not be locked onto whilst flying. The best GPS data were obtained from the Garmin eTrex (15 m kinematic and 2 m static) instruments which have a highsensitivity receiver with good lock on capability. The limitation of this GPS device is the inability to effectively receive the P-Code wavelength, which is needed to gain the best accuracy when undertaking differential GPS processing. Pairing the carrier phase L1 with the pseudorange C/A-Code received, in order to determine the image coordinates by the differential technique, is still under investigation. To improve the position accuracy, it is recommended that a GPS base station should be established near the survey area, instead of using a permanent GPS base station established by the Ordnance Survey.
Resumo:
The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.
Resumo:
We propose a modification of the nonlinear digital signal processing technique based on the nonlinear inverse synthesis for the systems with distributed Raman amplification. The proposed path-average approach offers 3 dB performance gain, regardless of the signal power profile.
Resumo:
The nonlinear Fourier transform, also known as eigenvalue communications, is a transmission and signal processing technique that makes positive use of the nonlinear properties of fibre channels. I will discuss recent progress in this field.
Resumo:
The nonlinear Fourier transform, also known as eigenvalue communications, is a coding, transmission and signal processing technique that makes positive use of the nonlinear Kerr effect in fibre channels. I will discuss recent progress in this field. © 2015 OSA.
Resumo:
Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.
In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.
Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.
Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.
Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.
To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.
The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.
This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.
Resumo:
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 us +/- 1.1 us and the exponential decays with a rate of 64 us +/- 15 us. The phenomenological model offers an interpretation of the material removal process.
Resumo:
Les convertisseurs de longueur d’onde sont essentiels pour la réalisation de réseaux de communications optiques à routage en longueur d’onde. Dans la littérature, les convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur constituent une solution extrêmement intéressante, et ce, en raison de leurs nombreuses caractéristiques nécessaires à l’implémentation de tels réseaux de communications. Avec l’émergence des systèmes commerciaux de détection cohérente, ainsi qu’avec les récentes avancées dans le domaine du traitement de signal numérique, il est impératif d’évaluer la performance des convertisseurs de longueur d’onde, et ce, dans le contexte des formats de modulation avancés. Les objectifs de cette thèse sont : 1) d’étudier la faisabilité des convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur pour les formats de modulation avancés et 2) de proposer une technique basée sur le traitement de signal numérique afin d’améliorer leur performance. En premier lieu, une étude expérimentale de la conversion de longueur d’onde de formats de modulation d’amplitude en quadrature (quadrature amplitude modulation - QAM) est réalisée. En particulier, la conversion de longueur d’onde de signaux 16-QAM à 16 Gbaud et 64-QAM à 5 Gbaud dans un amplificateur optique à semi-conducteur commercial est réalisée sur toute la bande C. Les résultats démontrent qu’en raison des distorsions non-linéaires induites sur le signal converti, le point d’opération optimal du convertisseur de longueur d’onde est différent de celui obtenu lors de la conversion de longueur d’onde de formats de modulation en intensité. En effet, dans le contexte des formats de modulation avancés, c’est le compromis entre la puissance du signal converti et les non-linéarités induites qui détermine le point d’opération optimal du convertisseur de longueur d’onde. Les récepteurs cohérents permettent l’utilisation de techniques de traitement de signal numérique afin de compenser la détérioration du signal transmis suite à sa détection. Afin de mettre à profit les nouvelles possibilités offertes par le traitement de signal numérique, une technique numérique de post-compensation des distorsions induites sur le signal converti, basée sur une analyse petit-signal des équations gouvernant la dynamique du gain à l’intérieur des amplificateurs optiques à semi-conducteur, est développée. L’efficacité de cette technique est démontrée à l’aide de simulations numériques et de mesures expérimentales de conversion de longueur d’onde de signaux 16-QAM à 10 Gbaud et 64-QAM à 5 Gbaud. Cette méthode permet d’améliorer de façon significative les performances du convertisseur de longueur d’onde, et ce, principalement pour les formats de modulation avancés d’ordre supérieur tel que 64-QAM. Finalement, une étude expérimentale exhaustive de la technique de post-compensation des distorsions induites sur le signal converti est effectuée pour des signaux 64-QAM. Les résultats démontrent que, même en présence d’un signal à bruité à l’entrée du convertisseur de longueur d’onde, la technique proposée améliore toujours la qualité du signal reçu. De plus, une étude du point d’opération optimal du convertisseur de longueur d’onde est effectuée et démontre que celui-ci varie en fonction des pertes optiques suivant la conversion de longueur d’onde. Dans un réseau de communication optique à routage en longueur d’onde, le signal est susceptible de passer par plusieurs étages de conversion de longueur d’onde. Pour cette raison, l’efficacité de la technique de post-compensation est démontrée, et ce pour la première fois dans la littérature, pour deux étages successifs de conversion de longueur d’onde de signaux 64-QAM à 5 Gbaud. Les résultats de cette thèse montrent que les convertisseurs de longueur d’ondes basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur, utilisés en conjonction avec des techniques de traitement de signal numérique, constituent une technologie extrêmement prometteuse pour les réseaux de communications optiques modernes à routage en longueur d’onde.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08