973 resultados para PROCESSING CHARACTERISTICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to evaluate the effectiveness of a few physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. The overall objective of this study is to evaluate the effectiveness of certain physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. survey of the chemical characteristics of the effluents discharged from rubber processing units showed that the effluents from latex concentration units were the most polluting

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensitisation of natural rubber latex by addition of a small quantity of an anionic surfactant prior to the addition of a coacervant results in quick coagulation. The natural rubber prepared by the novel coagulation method shows improved raw rubber characteristics, better cure characteristics in gum and carbon black filled compounds and improved mechanical properties as compared to the conventionally coagulated natural rubber. Compounds based on dried masterbatches prepared by the incorporation of fluffy carbon black in different forms of soap sensitised natural rubber latices such as fresh latex, preserved field latex, centrifuged latex and a blend of preserved field latex and skim latex show improved cure characteristics and vucanizate properties as compared to an equivalent conventional dry rubber-fluffy carbon black based compound. The latex masterbatch based vulcanizates show higher level of crosslinking and better dispersion of filler. Vulcanizates based on fresh natural rubber latex- dual filler masterbatches containing a blend of carbon black and silica prepared by the modified coagulation process shows very good mechanical and dynamic properties that could be correlated to a low rolling resistance. The carbon black/silica/nanoclay tri-filler - fresh natural rubber latex masterbatch based vulcanizates show improved mechanical properties as the proportion of nanoclay increased up to 5 phr. The fresh natural rubber latex based carbon black-silica masterbatch/ polybutadiene blend vulcanizates show superior mechanical and dynamic properties as compared to the equivalent compound vulcanizates prepared from the dry natural rubber-filler (conventional dry mix)/polybutadiene blends

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation and development work that has been undertaken to produce a signal equaliser used to improve the data rates from oil well logging instruments is presented. The instruments are lowered into the drill bore hole suspended by a cable which has poor electrical characteristics. The equaliser described in the paper corrects for the distortions that occur from the cable (dispersion and attenuation) with the result that the instrument can send data at 100 K.bits/second down its own suspension cable of 12 Km in length. The use of simulation techniques and tools were invaluable in generating a model for the distortions and proved to be a useful tool when site testing was not available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of normal word production are well specified about the effects of frequency of linguistic stimuli on lexical access, but are less clear regarding the same effects on later stages of word production, particularly word articulation. In aphasia, this lack of specificity of down-stream frequency effects is even more noticeable because there is relatively limited amount of data on the time course of frequency effects for this population. This study begins to fill this gap by comparing the effects of variation of word frequency (lexical, whole word) and bigram frequency (sub-lexical, within word) on word production abilities in ten normal speakers and eight mild–moderate individuals with aphasia. In an immediate repetition paradigm, participants repeated single monosyllabic words in which word frequency (high or low) was crossed with bigram frequency (high or low). Indices for mapping the time course for these effects included reaction time (RT) for linguistic processing and motor preparation, and word duration (WD) for speech motor performance (word articulation time). The results indicated that individuals with aphasia had significantly longer RT and WD compared to normal speakers. RT showed a significant main effect only for word frequency (i.e., high-frequency words had shorter RT). WD showed significant main effects of word and bigram frequency; however, contrary to our expectations, high-frequency items had longer WD. Further investigation of WD revealed that independent of the influence of word and bigram frequency, vowel type (tense or lax) had the expected effect on WD. Moreover, individuals with aphasia differed from control speakers in their ability to implement tense vowel duration, even though they could produce an appropriate distinction between tense and lax vowels. The results highlight the importance of using temporal measures to identify subtle deficits in linguistic and speech motor processing in aphasia, the crucial role of phonetic characteristics of stimuli set in studying speech production and the need for the language production models to account more explicitly for word articulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air frying is being projected as an alternative to deep fat frying for producing snacks such as French Fries. In air frying, the raw potato sections are essentially heated in hot air containing fine oil droplets, which dehydrates the potato and attempts to impart the characteristics of traditionally produced French fries, but with a substantially lower level of fat absorbed in the product. The aim of this research is to compare: 1) the process dynamics of air frying with conventional deep fat frying under otherwise similar operating conditions, and 2) the products formed by the two processes in terms of color, texture, microstructure, calorimetric properties and sensory characteristics Although, air frying produced products with a substantially lower fat content but with similar moisture contents and color characteristics, it required much longer processing times, typically 21 minutes in relation to 9 minutes in the case of deep fat frying. The slower evolution of temperature also resulted in lower rates of moisture loss and color development reactions. DSC studies revealed that the extent of starch gelatinization was also lower in the case of air fried product. In addition, the two types of frying also resulted in products having significantly different texture and sensory characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat Distillers’ Dried Grains with Solubles (DDGS) and in-process samples were used for protein extraction. Prolamins were the predominant protein components in the samples. The absence of extractable α- and γ-gliadins in DDGS indicated protein aggregation during the drum drying processing stage. Prolamin extraction was performed using 70% (v/v) ethanol or alkaline-ethanol solution in the presence of reducing agent. DDGS extracts had relatively low protein contents (14-44.9%, w/w), regardless of the condition applied. The wet solids were the most suitable raw material for protein extraction, with recovery yields of ~ 55% (w/w) and protein content of ~58% (w/w) in 70% (v/v) ethanol. Protein extracts from wet solids were significantly rich in glutamic acid and proline. Mass balance calculations demonstrated the high carbohydrate content (~ 50%, w/w) of solid residues. Overall, the feasibility of utilising in-process samples of DDGS for protein extraction with commercial potential was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to determine feed intake and average weight gain and to evaluate the ruminal morphologic characteristics of Saanen kids slaughtered at 30, 45 and 60 days of age, according to a completely randomized design. Thirty-six non-castrated male Saanen kids were fed ground total ration, pelleted total ration, or extruded total ration. Feed intake and refusals were controlled daily and the animals were weighed at birth and then once a week. Newborn kids received a milk replacer and were weaned at 45 days. Immediately after slaughter, the animals were eviscerated, the entire digestive apparatus was removed from the carcass. The reticulo-rumen was separated, emptied, washed and weighed. Samples were collected from the dorsal sac, pillar area and ventral sac of the rumen, fixed for about 24h in Bouin's solution, dehydrated, embedded in Histosec and cut into 5 mu m sections. Results showed that dry matter intake (DMI) at weaning and post-weaning and weight gain were higher (P < 0.05) in animals that received the pelleted total ration. The weight of the reticulo-rumen accompanied body development and was heavier in these animals. Histologically, after weaning ruminal papillae were more developed in animals that received pelleted total ration. Length of papillae increased with increase of age. The ratio of papillary height to papillary width increased with age in the ventral sac and until weaning (P > 0.05). We conclude that the pelleting process of the total ration favored increased intake, with a 46.7% increase in weight gain and increase in rumen weight and papillae length, suggesting that best results are obtained with this processing. In general, no difference was observed between the results obtained with extruded and ground total ration, although animals fed extruded total ration showed an increase in rumen weight and papillae width. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)