893 resultados para PRL PULSES
Resumo:
The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
The photoionization of H atoms irradiated by few-cycle laser pulses is studied numerically. The variations of the total ionization, the partial ionizations in opposite directions, and the corresponding asymmetry with the carrier-envelope phase in several pulse durations are obtained. We find that besides a stronger modulation on the partial ionizations, the change of pulse duration leads to a shift along carrier-envelope (CE) phase in the calculated signals. The phase shift arises from the nonlinear property of ionization and relates closely to the Coulomb attraction of the parent ion to the ionized electron. Our calculations show good agreement with the experimental observation under similar conditions.
Resumo:
Filamentation formed by self-focusing of intense laser pulses propagating in air is investigated. It is found that the position of filamentation can be controlled continuously by changing the laser power and divergence angle of the laser beam. An analytical model for the process is given.
Resumo:
The 45 degrees scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity similar to 10(16) W/cm(2). Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
A Fourier analysis method is used to accurately determine not only the absolute phase but also the temporal-pulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It paves the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.
Resumo:
We have developed a two-stage Ti:sapphire amplifier system which can produce 17-TW/23-fs pulses at a repetition rate 10 MHz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all-reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.
Resumo:
This paper deals with the distribution of generated microcrystallites in borate glass irradiated by 120 fs laser pulses at a central wavelength of 800 nm. Raman spectroscopy is used to investigate the distribution of the high and low temperature phases of barium metaborate crystals generated in the borate glass. In combination with a microexplosion model, bond-breaking induced by laser irradiation is served as the origin of the formation of BBO crystals. Depending on the laser fluence and cooling conditions, the distribution mechanisms have been discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report the laser-induced periodic structure with different spatial characteristics on the surface of polished ZnO single-crystalline by high repetition rate femtosecond laser pulses. This study demonstrates that, using different laser parameters and irradiation conditions, ZnO nanoripples and nanorods were successfully prepared. We have investigated the surface by means of scanning electron microscope (SEM), Raman scattering and photoluminescence (PL). We propose that second-order harmonic has a strong influence on the formation of nanostructures. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report selective metallization on surfaces of insulators ( glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. (C) 2007 Optical Society of America.
Resumo:
We describe the fabrication of microfluidic channel structures on the surface of a borosilicate glass slide by femtosecond laser direct writing for optical waveguide application. Liquid with a variable refractive index is fed into the microchannel, serving as the core of the waveguide. We demonstrate that either a multimode or a single-mode waveguide can be achieved by controlling the refractive index of the liquid. (C) 2007 Optical Society of America