928 resultados para PRACTICAL APPLICATIONS
Resumo:
Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.
Resumo:
This study shows the efficiency of passive sampling to reveal industrial and agricultural pollution trends. Two practical applications for nonpolar and polar contaminants are presented. Low-density polyethylene (LDPE) samplers were deployed for one year in the Venoge River (VD) to monitor indicator PCBs (iPCBs, IUPAC nos. 28, 52, 101, 138, 153 and 180). The results showed that the impact of PCB emissions into the river is higher in summer than in other seasons due to the low flow rate of the river during this period. P,olar organic chemical integrative samplers (POCIS) were deployed for 4 months in the Sion-Riddes canal (VS) to investigate herbicides (terbuthylazine, diuron and linuron). Desisopropylatrazine-d5 (DIA-d5) was tested as a performance reference compound (PRC) to estimate aqueous concentration. The results showed an increase of water contamination due to the studied agricultural area. The maximal contamination was observed in April and corresponds to the period of herbicide application on the crops.
Resumo:
This paper presents the Juste-Neige system for predicting the snow height on the ski runs of a resort using a multi-agent simulation software. Its aim is to facilitate snow cover management in order to i) reduce the production cost of artificial snow and to improve the profit margin for the companies managing the ski resorts; and ii) to reduce the water and energy consumption, and thus to reduce the environmental impact, by producing only the snow needed for a good skiing experience. The software provides maps with the predicted snow heights for up to 13 days. On these maps, the areas most exposed to snow erosion are highlighted. The software proceeds in three steps: i) interpolation of snow height measurements with a neural network; ii) local meteorological forecasts for every ski resort; iii) simulation of the impact caused by skiers using a multi-agent system. The software has been evaluated in the Swiss ski resort of Verbier and provides useful predictions.
Resumo:
Medical mycology has greatly benefited from the introduction of molecular techniques. New knowledge on molecular genetics has provided both theoretical and practical frameworks, permitting important advances in our understanding of several aspects of pathogenic fungi. Considering Paracoccidioides brasiliensis in particular, important eco-epidemiological aspects, such as environmental distribution and new hosts were clarified through molecular approaches. These methodologies also contributed to a better understanding about the genetic variability of this pathogen; thus, P. brasiliensis is now assumed to represent a species complex. The present review focuses on some recent findings about the current taxonomic status of P. brasiliensis, its phylogenetic and speciation processes, as well as on some practical applications for the molecular detection of this pathogen in environmental and clinical materials.
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariableswith some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependenceof a composition with a categorical variable, a colored set of ternary diagrams mightbe a good idea for a first look at the data, but it will fast hide important aspects ifthe composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if theconventional, black-box ilr is used.Thinking on terms of the Euclidean structure of the simplex, we suggest to set upappropriate projections, which on one side show the compositional geometry and on theother side are still comprehensible by a non-expert analyst, readable for all locations andscales of the data. This is e.g. done by defining special balance displays with carefully-selected axes. Following this idea, we need to systematically ask how to display, explore,describe, and test the relation to complementary or explanatory data of categorical, real,ratio or again compositional scales.This contribution shows that it is sufficient to use some basic concepts and very fewadvanced tools from multivariate statistics (principal covariances, multivariate linearmodels, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariateanalysis
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather
Resumo:
Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
This document contains a report and summary of the field research activities in a rural community of rice farmers in Kampot province, Cambodia in 2011, which I conducted within the context of my PhD research at ICTA-UAB (Institute of Environmental Science and Technology, Autonomous University of Barcelona, Spain). The purpose of the field research was to gather data for a MuSIASEM analysis (Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism) at the village and household level, in order to analyze the multidimensional challenges that small farmers may face nowadays within the context of global rural change and declining access to land. While the literature on MuSIASEM offers a great variety of theoretical explanations and practical applications, there is little information available for students regarding the practical steps required for doing a MuSIASEM analysis at the local level. Within this context, this report offers not only a documentation of the field research design and data collection methods, but further provides a general overview on some organizational and preparative aspects, including some personal reflections, that one may face when preparing and conducting field research for MuSIASEM analysis. In summary, this document thus serves three objectives: (i) to assure methodological transparency for the future work, based on the collected data during field research, (ii) to share my personal experience on the preparative and practical steps required for field research and data collection for a MuSIASEM analysis at the local level, and (iii) to make available for the further interested reader some more detailed background information on the case study village.
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
n the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.
Resumo:
Many classifiers achieve high levels of accuracy but have limited applicability in real world situations because they do not lead to a greater understanding or insight into the^way features influence the classification. In areas such as health informatics a classifier that clearly identifies the influences on classification can be used to direct research and formulate interventions. This research investigates the practical applications of Automated Weighted Sum, (AWSum), a classifier that provides accuracy comparable to other techniques whilst providing insight into the data. This is achieved by calculating a weight for each feature value that represents its influence on the class value. The merits of this approach in classification and insight are evaluated on a Cystic Fibrosis and Diabetes datasets with positive results.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
The Soil Nitrogen Availability Predictor (SNAP) model predicts daily and annual rates of net N mineralization (NNM) based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate). The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer) for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March). Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84). In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.