936 resultados para POSTPRANDIAL MOTILITY
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Resumo:
BACKGROUND: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function.
OBJECTIVE: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal.
METHODS: Adults with T2D [n = 18; age (means ± SEs): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men) were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food-style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10-12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment.
RESULTS: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h.
CONCLUSION: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989.
Resumo:
Background: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.
Methods: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays.
Results: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity.
Conclusions: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo.
Resumo:
A análise da mobilidade seminal é uma ferramenta importante para reprodução em aquacultura. Esta é uma técnica in vitro que auxilia a estabulação, manutenção e selecção de lotes de reprodutores. A análise de mobilidade seminal pode tornar-se potencialmente uma ferramenta para o melhoramento das condições do ambiente de fertilização. A utilização do software CASA (Computer Assisted Sperm Analysis) revolucionou a descrição e quantificação específica da mobilidade seminal. A maioria da informação recolhida sobre mobilidade de sémen de peixes baseia-se em espécies de água doce, pelo que é crucial conhecer as condições óptimas de activação da mobilidade de espermatozóides para novas espécies de de água salgada de interesse em aquacultura tal como Solea senegalensis. A optimização das condições de fertilização desta espécie é particularmente importante já que os lotes de reprodutores em cativeiro podem desenvolver disfunções reprodutoras. Este trabalho teve como objectivo realizar a avaliação das condições óptimas de activação da mobilidade do sémen em S. senegalensis em termos de temperatura, salinidade e pH. O segundo objectivo foi realizar a avaliação da influência de fluido ovárico homólogo (S. senegalensis) e heterólogo (Epinephelus marginatus) na mobilidade seminal de S. senegalensis. Deste modo foram realizados dois conjuntos de experiências: 1) mobilidade de sémen de 7 machos analisado através do CASA em diferentes temperaturas, salinidades e pH, 2) mobilidade de sémen de 8 machos activados na presença de diferentes concentrações de fluido ovárico. Os parâmetros do CASA foram registados e posteriormente analisados através de médias e cluster analysis. Concluiu-se que temperaturas mais elevadas (20 ºC) e baixas salinidades (25 ‰ e 30 ‰) da solução de activação ocorre um melhoramento das características de mobilidade seminal, tal como a velocidade. A presença de fluido ovárico em baixas concentrações melhora as características da mobilidade seminal assim como a longevidade dos espermatozóides. O fluido ovárico é consequentemente um factor que estimula a mobilidade seminal que tem sido negligenciado em estudos anteriores. Este estudo demonstrou que durante a época de reprodução a temperatura da água (20 ºC) e a salinidade (25 ‰ e 30 ‰) no tanque são os principais factores que melhoram a activação da mobilidade do sémen, sendo consequentemente uma contribuição importante para compreender a dinâmica do processo de fertilização em S. senegalensis.
Resumo:
PURPOSE: Orbital wall fracture may occur during endoscopic sinus surgery, resulting in oculomotor disorders. We report the management of four cases presenting with this surgical complication. METHODS: A non-comparative observational retrospective study was carried out on four patients presenting with diplopia after endoscopic ethmoidal sinus surgery. All patients underwent full ophthalmologic and orthoptic examination as well as orbital imaging. RESULTS: All four patients presented with diplopia secondary to a medial rectus lesion confirmed by orbital imaging. A large horizontal deviation as well as limitation of adduction was present in all cases. Surgical management consisted of conventional recession-resection procedures in three cases and muscle transposition in one patient. A useful field of binocular single vision was restored in two of the four patients. CONCLUSION: Orbital injury may occur during endoscopic sinus surgery and cause diplopia, usually secondary to medial rectus involvement due to the proximity of this muscle to the lamina papyracea of the ethmoid bone. Surgical management is based on orbital imaging, duration of the lesion, evaluation of anterior segment vasculature, results of forced duction testing and intraoperative findings. In most cases, treatment is aimed at the symptoms rather than the cause, and the functional prognosis remains guarded.
Resumo:
Tesis (Maestro en Ciencias en Nutrición) UANL, 2012.
Resumo:
In this thesis I propose a novel method to estimate the dose and injection-to-meal time for low-risk intensive insulin therapy. This dosage-aid system uses an optimization algorithm to determine the insulin dose and injection-to-meal time that minimizes the risk of postprandial hyper- and hypoglycaemia in type 1 diabetic patients. To this end, the algorithm applies a methodology that quantifies the risk of experiencing different grades of hypo- or hyperglycaemia in the postprandial state induced by insulin therapy according to an individual patient’s parameters. This methodology is based on modal interval analysis (MIA). Applying MIA, the postprandial glucose level is predicted with consideration of intra-patient variability and other sources of uncertainty. A worst-case approach is then used to calculate the risk index. In this way, a safer prediction of possible hyper- and hypoglycaemic episodes induced by the insulin therapy tested can be calculated in terms of these uncertainties.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. METHODS AND RESULTS: In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3β as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3β. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3β phosphorylation and the subsequent expression of β-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. CONCLUSION: We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of β-catenin alone was insufficient to stimulate cell motility.
Resumo:
Purpose: To assess the effect of hyaluronidase on eye and eyelid movements when used as an adjunct in sub-Tenon's anaesthesia. Methods: A total of 60 patients who had sub-Tenon's anaesthesia prior to phacoemulsification surgery were divided into two equal groups in a double-masked randomised controlled fashion. Of these, Group A had 4 ml lignocaine 2%, while Group B had 4ml lignocaine 2% with the addition of sodium hyaluronidase 75 IU/ml. Ocular motility, levator, and orbicularis oculi function were measured in all patients at 5 and 8 min. Levator function was scored from 0 (no function) to 3 (complete function) while orbicularis function was scored from 0 to 2. The score for ocular motility was the sum in four positions of gaze, each position scoring from 0 to 2. Results were compared using a nonparametric test. Results Group B achieved significantly better ocular and lid akinesia than Group A both at 5 and 8 min with P < 0.01. The median scores for levator function at 5 and 8 min were 2 for Group A and 0 for Group B. For orbicularis function, the median scores at both time intervals were 2 for Group A and 1 for Group B. For ocular motility, the median score for Group A at 5 min was 3 and at 8 min was 2.5; for Group B at 5 min was 0.5 and at 8 min was 0. Conclusions: The addition of hyaluronidase in sub-Tenon's anaesthesia has a significant effect in improving ocular and lid (levator and orbicularis) akinesia.
Resumo:
Although apolipoprotein AN (apoA-V) polymorphisms have been consistently associated with fasting triglyceride (TG) levels, their impact on postprandial lipemia remains relatively unknown. In this study, we investigate the impact of two common apoA-V polymorphisms (-1131 T>C and S19W) and apoA-V haplotypes on fasting and postprandial lipid metabolism in adults in the United Kingdom (n = 259). Compared with the wild-type TT, apoA-V -1131 TC heterozygotes had 15% (P = 0.057) and 21% (P = 0.002) higher fasting TG and postprandial TG area under the curve (AUC), respectively. Significant (P = 0.038) and nearly significant (P = 0.057) gender X genotype interactions were observed for fasting TG and TG AUC, with a greater impact of genotype in males. Lower HDL-cholesterol was associated with the rare TC genotype (P = 0.047). Significant linkage disequilibrium was found between the apoA-V -1131 T>C and the apoC-III 3238 C>G variants, with univariate analysis indicating an impact of this apoC-III single nucleotide polymorphism (SNP) on TG AUC (P = 0.015). However, in linear regression analysis, a significant independent association with TG AUC (P = 0.007) was only evident for the apoA-V -1131 T>C SNP, indicating a greater relative importance of the apoA-V genotype.
Resumo:
Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, AN, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal trigyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.