955 resultados para POSTHARVEST BROWN-ROT
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
BACKGROUND Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. RESULTS Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). CONCLUSION Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry
Resumo:
Anthracnose and stem end rots are the main postharvest diseases affecting mangoes in Australia and limiting the shelf life of fruits whenever they are not controlled. The management of these diseases has often relied on the use of fungicide applications either as field spray treatments, postharvest dips or both. Because of concerns with continuous fungicide use, other options for the sustainable management of these diseases are needed. Field trials were conducted to assess the efficacy of three plant activators for the control of these diseases over a 2-year period on 20-year old ‘R2E2’ mango trees in north Queensland. The activators evaluated were: Bion, Kasil and Mangocote. The efficacy of these activators was compared with that of a standard industry field spray program using a combination of fungicides, as well as to un¬treated controls. Conditions favoured good development of the target diseases in both years to be able to differentiate treatment effects. Kasil as a drench was as effective as the standard fungicide program on the management of anthracnose and stem end rots. Bion as foliar sprays showed similar efficacy with its effectiveness comparable with the standard spray program. Both activators had significantly less disease incidences when compared with the untreated control. The third activator, Mangocote was not very effective in controlling the target diseases. Its effect was not significantly better than the untreated controls. The results from this 2-year study suggest that plant activators can play an effective role in mango postharvest disease management. Proper timing could reduce the number of fungicide sprays in an integrated disease management program enabling sustainable yields of quality fruits without the continuous concerns of health and environmental risks from continuous reliance on fungicide use.
Resumo:
The shelf-life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots ( Neofusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicide applications either as field spray treatments and/or postharvest dips. Current postharvest dips are under continuous threats because of health concerns and the maximum residue levels allowed on treated fruit continuous to be reviewed and re-assessed. Research needs to keep up with the rate at which changes are occurring following some of these reviews. The recent withdrawal of carbendazin (Spinflo), as a postharvest dip being used to manage stem end rots necessitated the urgent search for a replacement fungicide to manage this disease. A study was therefore undertaken to compare the efficacy of current and potential products that could be used to fill the gap. The following products were evaluated: Carbendazin (Spinflo), Prochloraz (Sportak), Thiobendazole (TBZ) and Fludioxonil (Scholar). These products were tested both under ambient temperatures and as hot dips to identify one that was most effective. Scholar as a hot dip was the most effective product among the ones compared. It effectively controlled both anthracnose and stem end rots at highly significant levels when compared to the untreated control and even Spinflo which is being replaced. As a cold dip, it had some limited effect on anthracnose but had virtually no effect on stem end rots. Based on its performance in these experiments, the product has been recommended for rates and residue studies so that it can be registered as a hot dip for use in controlling postharvest diseases of mangoes.
Resumo:
Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.
Resumo:
Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
Results from the first of two artificially inoculated field experiments showed foliar applications of copper hydroxide (Blue Shield Copper) at 600 g a.i./100 L−1 (0% infected fruit), copper hydroxide + metalaxyl-M (Ridomil Gold Plus.) at 877.5 g a.i./100 L−1 (0.27%), metiram + pyraclostrobin (Aero) at 720 g a.i./100 L−1 (0.51%), chlorothalonil (Bravo WeatherStik) at 994 g a.i./100 L−1 (0.63%) and cuprous oxide (Nordox 750 WG) at 990 g a.i./100 L−1 (0.8%) of water significantly reduced the percentage of infected fruit compared to potassium phosphonate (Agri-Fos 600) at 1200 g a.i./100 L−1 (8.22%), dimethomorph (Acrobat) at 108 g a.i./100 L−1 (11.18%) and the untreated control (16%). Results from the second experiment showed fruit sprayed with copper hydroxide (Champ Dry Prill) at 300 (2.0% infected fruit), 375 (0.4%) and 450 g a.i./100 L−1 (0.6%) and metiram + pyraclostrobin (Aero) at 360 (2.8%), 480 (0.6%) and 600 g a.i./100 L−1 of water (1.0%) significantly reduced the percentage of infected fruit compared to the untreated control (19.4%). Foliar sprays of copper hydroxide at 375 g a.i./100 L−1 in rotation with chlorothalonil at 994 g a.i./100 L−1 every two weeks is now recommended to growers for controlling Phytophthora fruit rot of papaya.
Resumo:
Many authors have noted that consumer confidence in buying fresh flowers is strongly related to their perceived value in that quality and vase life must be high and consistent over time for consumers to repeat buy. Growers, wholesalers, exporters and retailers seek practical information about recommended handling and treatments at the harvest and postharvest stages, including that relating to flowers native to Australia and South Africa ("wildflowers"). This information is essential for products to be of high quality with an acceptable vase life for the end consumer, especially if exported. Published postharvest manuals generally focus on traditional flower crops and so rarely include many, or any, wildflowers. A manual entitled Postharvest Handling of Australian flowers from Native Plants and Related Species was published in 2002 and addressed this gap, but required updating. This situation presented an opportunity to provide in-depth information to compliment the Australian wildflower quality specifications (see accompanying paper in the same volume), and to assemble the latest knowledge on wildflower quality and postharvest issues. The resultant manual contains extensive information about harvesting, quality issues and recommended postharvest care focussed on wildflowers. Much of the information is documented for the first time, being based on the most up to date research and development (R&D) as well as practical experience of the floral supply chain, researchers and other technical experts. The manual provides practical and detailed information on postharvest treatment of fresh wildflowers for growers, florists, wholesalers and exporters to use on a daily basis. It discusses the many unique features of wildflowers that must be understood and managed in order to maximise their quality and vase life after marketing and export. The manual also includes postharvest advice for 16 flower- and foliage lines for which quality specifications were not produced. This advice is presented according to the same template as the specifications.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.
Resumo:
Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
Diaporthe (syn. Phomopsis) species are well-known saprobes, endophytes or pathogens on a range of plants. Several species have wide host ranges and multiple species may sometimes colonise the same host species. This study describes eight novel Diaporthe species isolated from live and/or dead tissue from the broad acre crops lupin, maize, mungbean, soybean and sunflower, and associated weed species in Queensland and New South Wales, as well as the environmental weed bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia. The new taxa are differentiated on the basis of morphology and DNA sequence analyses based on the nuclear ribosomal internal transcribed spacer region, and part of the translation elongation factor-1α and ß-tubulin genes. The possible agricultural significance of live weeds and crop residues ('green bridges') as well as dead weeds and crop residues ('brown bridges') in aiding survival of the newly described Diaporthe species is discussed.