702 resultados para POLYPLACOPHORA MOLLUSCA
Resumo:
The Mollusca is one of the most diverse, important and well-studied invertebrate phyla; however, relationships among major molluscan taxa have long been a subject of controversy(1-9). In particular, the position of the shell-less vermiform Aplacophora and its relationship to the better-known Polyplacophora (chitons) have been problematic: Aplacophora has been treated as a paraphyletic or monophyletic group at the base of the Mollusca(3,6,8), proximate to other derived clades such as Cephalopoda(2,3,10), or as sister group to the Polyplacophora, forming the clade Aculifera(1,5,7,11,12). Resolution of this debate is required to allow the evolutionary origins of Mollusca to be reconstructed with confidence. Recent fossil finds(13-16) support the Aculifera hypothesis, demonstrating that the Palaeozoic-era palaeoloricate 'chitons' included taxa combining certain polyplacophoran and aplacophoran characteristics(5). However, fossils combining an unambiguously aplacophoran-like body with chiton-like valves have remained elusive. Here we describe such a fossil, Kulindroplax perissokomos gen. et sp. nov., from the Herefordshire Lagerstatte(17,18) (about 425 million years BP), a Silurian deposit preserving a marine biota(18) in unusual three-dimensional detail. The specimen is reconstructed three-dimensionally through physical-optical tomography(19). Phylogenetic analysis indicates that this and many other palaeoloricate chitons are crown-group aplacophorans.
Resumo:
Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.
Resumo:
Chitons are often referred to as "living fossils" in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.
Resumo:
Organismal metabolic rates influence many ecological processes, and the mass-specific metabolic rate of organisms decreases with increasing body mass according to a power law. The exponent in this equation is commonly thought to be the three-quarter-power of body mass, determined by fundamental physical laws that extend across taxa. However, recent work has cast doubt as to the universality of this relationship, the value of 0.75 being an interspecies 'average' of scaling exponents that vary naturally between certain boundaries. There is growing evidence that metabolic scaling varies significantly between even closely related species, and that different values can be associated with lifestyle, activity and metabolic rates. Here we show that the value of the metabolic scaling exponent varies within a group of marine ectotherms, chitons (Mollusca: Polyplacophora: Mopaliidae), and that differences in the scaling relationship may be linked to species-specific adaptations to different but overlapping microhabitats. Oxygen consumption rates of six closely related, co-occurring chiton species from the eastern Pacific (Vancouver Island, British Columbia) were examined under controlled experimental conditions. Results show that the scaling exponent varies between species (between 0.64 and 0.91). Different activity levels, metabolic rates and lifestyle may explain this variation. The interspecific scaling exponent in these data is not significantly different from the archetypal 0.75 value, even though five out of six species-specific values are significantly different from that value. Our data suggest that studies using commonly accepted values such as 0.75 derived from theoretical models to extrapolate metabolic data of species to population or community levels should consider the likely variation in exponents that exists in the real world, or seek to encompass such error in their models. This study, as in numerous previous ones, demonstrates that scaling exponents show large, naturally occurring variation, and provides more evidence against the existence of a universal scaling law. © 2012 Elsevier B.V.
Resumo:
Several methods have been proposed to ‘clean’ the soft tissues of molluscs of mucus, so that the surface cilia can be examined microscopically. We report the first empirical test of the effectiveness of methods for removing mucus in the pallial cavity surface of chitons. Three methods were compared, at several time intervals: the enzyme hyaluronidase, the mucolytic agent N-acetyl cysteine (NAC), and seawater washing via the natural action of cilia in excised tissue. Treatment in NAC for 10 min produced the best results, and we recommend this protocol as a starting point for further investigation on mucus removal in a broader suite of taxa. We present the first description of the pallial surface cilia in the chiton Lepidochitona cinerea. During the course of this study, we also determined that these chitons were frequently infested with a ciliate protozoan parasite, Trichodina sp., which have been historically reported from chitons but never studied in detail. The parasites were absent where antimucus treatments were effective, but their abundance and large size (about 30-mm diameter) in less successful treatments obscured the view of the pallial cavity surface.
Resumo:
Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.
Resumo:
Mollusks are the most morphologically disparate living animal phylum, they have diversified into all habitats, and have a deep fossil record. Monophyly and identity of their eight living classes is undisputed, but relationships between these groups and patterns of their early radiation have remained elusive. Arguments about traditional morphological phylogeny focus on a small number of topological concepts but often without regard to proximity of the individual classes. In contrast, molecular studies have proposed a number of radically different, inherently contradictory, and controversial sister relationships. Here, we assembled a dataset of 42 unique published trees describing molluscan interrelationships. We used these data to ask several questions about the state of resolution of molluscan phylogeny compared to a null model of the variation possible in random trees constructed from a monophyletic assemblage of eight terminals. Although 27 different unique trees have been proposed from morphological inference, the majority of these are not statistically different from each other. Within the available molecular topologies, only four studies to date have included the deep-sea class Monoplacophora; but 36.4% of all trees are not significantly different. We also present supertrees derived from 2 data partitions and 3 methods, including all available molecular molluscan phylogenies, which will form the basis for future hypothesis testing. The supertrees presented here were not constructed to provide yet another hypothesis of molluscan relationships, but rather to algorithmically evaluate the relationships present in the disparate published topologies. Based on the totality of available evidence, certain patterns of relatedness among constituent taxa become clear. The internodal distance is consistently short between a few taxon pairs, particularly supporting the relatedness of Monoplacophora and the chitons, Polyplacophora. Other taxon pairs are rarely or never found in close proximity, such as the vermiform Caudofoveata and Bivalvia. Our results have specific utility for guiding constructive research planning in order to better test relationships in Mollusca as well as other problematic groups. Taxa with consistently proximate relationships should be the focus of a combined approach in a concerted assessment of potential genetic and anatomical homology, while unequivocally distant taxa will make the most constructive choices for exemplar selection in higher-level phylogenomic analyses.
Resumo:
Radiation of dramatically disparate forms among the phylum Mollusca remains a key question in metazoan evolution, and requires careful evaluation of homology of hard parts throughout the deep fossil record. Enigmatic early Cambrian taxa such as Halkieria and Wiwaxia (in the clade Halwaxiida) have been proposed to represent stem-group aculiferan molluscs (Caudofoveata+Solenogastres+Polyplacophora), as complex scleritomes were considered to be unique to aculiferans among extant molluscs. The 'scaly-foot gastropod' (Neomphalina: Peltospiridae) from hydrothermal vents of the Indian Ocean, however, also carries dermal sclerites and thus challenges this inferred homology. Despite superficial similarities to various mollusc sclerites, the scaly-foot gastropod sclerites are secreted in layers covering outpockets of epithelium and are largely proteinaceous, while chiton (Polyplacophora: Chitonida) sclerites are secreted to fill an invaginated cuticular chamber and are largely calcareous. Marked differences in the underlying epithelium of the scaly-foot gastropod sclerites and operculum suggest that the sclerites do not originate from multiplication of the operculum. This convergence in different classes highlights the ability of molluscs to adapt mineralized dermal structures, as supported by the extensive early fossil record of molluscs with scleritomes. Sclerites of halwaxiids are morphologically variable, undermining the assumed affinity of specific taxa with chitons, or the larger putative clade Aculifera. Comparisons with independently derived similar structures in living molluscs are essential for determining homology among fossils and their position with respect to the enigmatic evolution of molluscan shell forms in deep time.
Resumo:
Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.
Resumo:
Despite the importance of larval abundance in determining the recruitment of benthic marine invertebrates and as a major factor in marine benthic community structure, relating planktonic larval abundance with post-settlement post-larvae and juveniles in the benthos is difficult. It is hampered by several methodological difficulties, including sampling frequency, ability to follow larval and post-larval or juvenile cohorts, and ability to calculate growth and mortality rates. In our work, an intensive sampling strategy was used. Larvae in the plankton were collected at weekly intervals, while post-larvae that settled into collectors were analysed fortnightly. Planktonic larval and benthic post-larval/juvenile cohorts were determined, and growth and mortality rates calculated. Integration of all equations allowed the development of a theoretical formulation that, based on the abundance and planktonic larval duration, permits an estimation of the future abundance of post-larvae/juveniles during the first year of benthic life. The model can be applied to a sample in which it was necessary only to measure larval length.
Resumo:
Se da a conocer el primer registro del calmar Lollinguncula tydeus Brakoniecki, 1980, para el Perú. Su presencia esta asociada con Fenómenos El Niño. Se proporciona una breve descripción, datos morfométricos y merísticos e índices de esta especie, que se compara con Lolliguncula panamensis.
Resumo:
The present investigation is dedicated to understanding various mechanisms of salinity tolerance in the estuarine clam V. cyprinoides var. cochinensis. Even though V. cyprinoids var. cochinensis and V. cyprinoides are found to coexist in the same area, V. cyprinoids is reported to tolerate higher salinities than variety cochinenesis. Variations in the salinity of sea water may affect the aquatic organisms through specific gravity control and variations in osmotic pressure. The specific gravity of most soft tissues is close to that of normal seawater. Many bottom living forms, both attached and motile, have very high specific gravities eg.villorita cyprinoids. Villorita spp. Occurs abundantly in the reaches of the estuary and backwaters of Kerala. In both marine and estuarine forms, it is observed that mantle employs a lesser quantity of amino acids compared to adductor and foot. The regulation of cell volume is not carried out equally in all types of tissues. The capability of salinity tolerance is an aggregate of both the capabilities of extra cellular anisosmotic and intracellular isosmotic regulations in osmoconforming animals. The ultimate aim of water regulation is to regulate the cell volume.T here are slight changes occur in cell volume even in osmoregulators. These studies can also help in revealing the changes brought about in the cellular organelles like lysosomes, which were found to have a role in the osmoregulatory process. The osmoregulatory machinery of estuarine animals is more streamlined for a successful life in the estuarine regime.