772 resultados para POLYMER BLEND COMPATIBILIZATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilising supramolecular pi-pi stacking interactions to drive miscibility in two-component polymer blends offers a novel approach to producing materials with unique properties. We report in this paper the preparation of a supramolecular polymer network that exploits this principle. A low molecular weight polydiimide which contains multiple pi-electron-poor receptor sites along its backbone forms homogeneous films with a siloxane polymer that features pi-electron-rich pyrenyl end-groups. Compatibility results from a complexation process that involves chain-folding of the polydiimide to create an optimum binding site for the pi-electron-rich chain ends of the polysiloxane. These complementary pi-electron-rich and -poor receptors exhibit rapid and reversible complexation behaviour in solution, and healable characteristics in the solid state in response to temperature. A mechanism is proposed for this thermoreversible healing behaviour that involves disruption of the intermolecular pi-pi stacking cross-links as the temperature of the supramolecular film is increased. The low T-g siloxane component can then flow and as the temperature of the blend is decreased, pi-pi stacking interactions drive formation of a new network and so lead to good damage-recovery characteristics of the two-component blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion in concentrated polymer systems is described by either the Rouse or the reptation model, which both assume that the relaxation of each polymer chain is independent of the surrounding chains. This, however, is in contradiction with several experiments. In this Letter, we propose a universal description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter κ(t). We use molecular dynamics simulations to show that the coupling parameter increases with time, reaching about 50% at long times, independently of the chain length or blend composition. This leads to predictions of component dynamics in mixtures of different molecular weights from the knowledge of monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a significant role in the observed coupling. © 2010 The American Physical Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.