943 resultados para POLY(ETHYLENE OXIDES)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties and crystalline structure of the amphiphilic graft copolymers CR-g-PEG600, CR-g-PEG2000, and CR-g-PEG6000 using chloroprene rubber (CR) as the hydrophobic backbone and poly(ethylene glycol) (PEG) with different molecular weights as the hydrophilic side chains were studied by DSC and WAXD. The results showed that a distinct phase-separated structure existed in CR-g-PEGs because of the incompatibility between the backbone segments and the side-chain segments. For all the polymers studied, T-m2, which is the melting point of PEG crystalline domains in CR-g-PEG, decreased compared to that of the corresponding pure PEG and varied little with PEG content. For CR-g-PEG600 and CR-g-PEG2000, T-m1, which is the melting point of the CR crystalline domains, increased with increasing PEG content when the PEG content was not high enough, and at constant PEG content, the longer were the PEG side chains the higher was the T-m1. The crystallite size L-011 of CR in CR-g-PEGs increased compared to that of the pure CR and decreased with increasing PEG content. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior and melting process of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEG) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal behavior and morphology of blends prepared by solution casting of mixtures of chitosan and poly( ethylene oxide) were studied by means of differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The preliminary results indicate that both melting point and crystallinity depend on the composition of the blends, and that they exhibit minimum values when the blend contains 50% chitosan. From the prediction of melting point depression analysis, the compatibility of the blends shows a transition at this specific composition. This conclusion was further confirmed by observation of the morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intrinsic viscosities of poly(ethylene oxide)-poly(vinyl acetate) blends (PEO-PVA) have been measured in chloroform as a function of molecular weights of blend components and compositions. The interaction parameters Delta b obtained from the modified Krigbaum and Wall theory and the differences between the intrinsic viscosities of polymer mixtures and the weight-average intrinsic viscosities of the two blend components were both used to characterize the extent of miscibility of the blend mixtures. (C) 1995 John Wiley and Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP (PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilize

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various' conditions. The interfacial charge-transfer resistances R(ct) on PEO/PAn, R(ct) on PEO/LiMn2O4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(ct) on PEO/PAn is higher than R(ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat-of-mixing data, obtained on blends of poly(ethylene oxide) (PEO) with whole and fractionated poly(vinyl acetate) (PVAc), were used to feed Patterson's theory of polymer-polymer miscibility. Negative values of mixing enthalpy, contact-energy term, interaction'' parameter and excess volume were obtained only for blends with the lowest molecular weight PVAc fraction. These results show that miscibility of PVAc with PEO strongly depends on its molecular weight. The calculated unfavourable excess volume term of the Patterson equation is small in comparison with the absolute value of the interaction term. Therefore, miscibility of PEO and low-molecular-weight PVAc is dictated by the weak specific interactions between different repeat units and by the entropic gain in the mixing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation-induced crosslinking of poly(methyl methacrylate) (PMMA)-poly(methylene oxide) (PEO) blends was studied. It was found that PMMA in PMMA-PEO blend can be crosslinked in the range of certain doses (1 approximately 20 x 10(4) Gy) and composition (PMMA% = 30 approximately 70) under the absence of oxygen. Moreover, it was also found that the crosslinking degree of PMMA in the blend in which the content of PMMA is 70% is the largest. The crosslinking degree of PMMA in the blend is closely related with the polymer miscibility. The crosslinking degree of the blend prepared at 60-degrees-C is far higher than one at ambient temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) was found to be miscible with uncured epoxy resin, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) in each blend. However, PEO with M(n) = 20 000 was judged to be immiscible with the highly amine-crosslinked epoxy resin (ER). The miscibility and morphology of the ER/PEO blends was remarkably affected by crosslinking. It was observed that phase separation in the ER/PEO blends occurred as the crosslinking progressed. This is considered to be due to the dramatic change in the chemical and physical nature of ER during the crosslinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology and mechanical behaviour of phenolphthalein poly(ether ether ketone) (PEK-C)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends has been investigated. A poly(ethylene oxide)-b-polystyrene-b-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer was used as compatibilizer. It was found that PEO-PS-PEO has a compatibilizing effect on the PEK-C/PPO blends. The addition of PEO-PS-PEO to the blends greatly improves phase dispersion and interfacial interfacial adhesion and also enhances the ultimate tensile strength and Young's modulus at compositions ranging from 30 to 70% PEK-C. However, all the values of the ultimate tensile strength within the whole composition range are lower than those expected by simple additivity, probably owing to the poor mechanical properties of PEO-PS-PEO copolymer.