992 resultados para PHOTOLUMINESCENCE
Resumo:
We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.
Resumo:
Recently, a lot of interest has been centred on the optical properties of hexagonal boron nitride (h-BN), which has a similar lattice structure to graphene. Interestingly, h-BN has a wide bandgap and is biocompatible, so it has potential applications in multiphoton bioimaging, if it can exhibit large nonlinear optical (NLO) properties. However, extensive investigation into the NLO properties of h-BN have not been done so far. Here, NLO properties of 2D h-BN nanosheets (BNNS) are reported for the first time, using 1064-nm NIR laser radiation with a pulse duration of 10 ns using the Z-scan technique. The reverse saturable absorption occurs in aqueous colloidal solutions of BNNS with a very large two-photon absorption cross section (sigma(2PA)) of approximate to 57 x 10(-46) cm(4) s(-1) photon(-1). Also, by using UV-Vis absorption spectroscopy, the temperature coefficient of the bandgap (dE(g)/dT) of BNNS is determined to be 5.9 meV K-1. Further defect-induced photoluminescence emission in the UV region is obtained in the 283-303 K temperature range, under excitations of different wavelengths. The present report of large sigma(2PA) combined with stability and biocompatibility could open up new possibilities for the application of BNNS as a potential optical material for multiphoton bioimaging and advanced photonic devices.
Resumo:
Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.
Resumo:
Wafer/microcrystallites of oxidized Ge with holes/nanoholes synthesized by thermal oxidation strategy from Ge wafer/microcrystallites can convert one wavelength to another. Both oxidized Ge wafer and microcrystallites shows excitation- and power-dependent luminescence. Red-shift is observed as the excitation wavelength is increased, while blue-shift is observed as power density is increased. Over all, blue-green-yellow-orange luminescence is observed depending on the excitation wavelength and the morphology of oxidized Ge. The various defects level associated with germanium-oxygen vacancies in GeO2 and Ge/GeO2 interface are responsible for the excitation-dependent luminescence. Being a light-conversion material, oxidized Ge is expected to find potential applications in solid-state lighting, photovoltaic devices and photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.
Resumo:
MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence and photocatalytic properties of Eu-doped ZnO nanoparticles (NPs) were synthesized by facile phyto route. XPS results demonstrated the existence of Eu3+ as dopant into ZnO. Morphologies of the NPs were mainly dependent on Eu3+ and Aloe vera gel. Red shift of energy band gap was due to the creation of intermediate energy states of Eu3+ and oxygen vacancies in the band gap. PL emission of ZnO:Eu3+ (1-11 mol%, 8 ml and 7 mol%, 2-12 ml) exhibit characteristic peaks of D-5(0) -> F-7(2) transitions. From the Judd-Ofelt analysis, intensities of transitions between different.' levels dependent on the symmetry of the local environment of Eu3+ ions. CIE chromaticity co-ordinates confirm reddish emission of the phosphor. Further, NPs exhibit excellent photocatalytic activity for the degradation of Rhodamine B (94%) under Sunlight was attributed to crystallite size, band gap, morphology and oxygen vacancies. In addition, photocatalyst reusability studies were conducted and found that Eu-doped catalyst could be reused several times with negligible decrease in catalytic activity. The present work directs new possibilities to provide some new insights into the design of new phyto synthesized nanophosphors for display devices, photocatalysts with high activity for environmental clean-up and solar energy conversion. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).
Resumo:
We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: sigma*-LP, pi*-LP, and pi*-pi, respectively. The overall activation energy is found to be similar to 73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.
Resumo:
Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.
Resumo:
Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.
Resumo:
We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.
Resumo:
In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.
Resumo:
We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.