214 resultados para PHEROMONE
Resumo:
In a series of experiments conducted in stone fruit orchards in southern Australia, water-based funnel-type traps baited with synthetic aggregation pheromone and fermenting bread dough, trapped 3- to 7-fold as many Carpophihus beetles (primarily C. dauidsoni) than wind-oriented pipe traps or dry funnel traps. The efficacy of dry funnel traps but not pipe traps, appeared to be improved by using water-filled collecting bottles. The potential for using water-based funnel traps in population suppression of Carpophilus spp. in stone fruit orchards through mass trapping is discussed.
Resumo:
An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Resumo:
Investigations into pheromone monitoring and efficacy of insecticides to improve Integrated Pest Management (IPM) of eggfruit caterpillar.
Resumo:
The status of the exotic clerid beetle Opetiopalpus scutellaris Panzer has been unclear due to the ambiguous nature of the single previous Australian record. Recent pheromone trapping at grain stores in Western Australia indicate that O. scutellaris is locally naturalised within the Western Australian wheatbelt. It is considered likely that the trapped O. scutellaris specimens originated from surrounding areas rather than being directly associated with grain.
Resumo:
Sceliodes cordalis (Doubleday) is an important pest of eggplant but little is known of its biology. Egg size, oviposition sites, seasonal occurrence and egg parasitism were studied from 2006 to 2008 in the coastal Burnett district of Queensland. Eggs (L:W:H:: 0.716 mm:0.445 mm:0.292 mm) were laid predominantly on the calyx of the fruit but not on flowers. Trichogramma Westwood and Trichogrammatoidea Girault wasps emerged from parasitised eggs. Pheromone traps caught moths throughout the year, with higher catches in spring and summer than in winter and in the presence of eggplant crops. © Entomological Society of Queensland.
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
The role of pheromones and pheromone-binding proteins in the laboratory rat has been extensively investigated. However, we have previously reported that the preputial gland of the Indian commensal rat produces a variety of pheromonal molecules and preputial glands would seem to be the predominant source for pheromonal communication. The presence of pheromone-binding proteins has not yet been identified in the preputial gland of the Indian commensal rat; therefore, the experiments were designed to unravel the alpha(2u)-globulin (alpha 2u) and its bound volatiles in the commensal rat. Total preputial glandular proteins were first fractionated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently analyzed by mass spectrometry. Further, we purified alpha 2u and screened for the presence of bound pheromonal molecules with the aid of gas chromatography/mass spectrometry (GC/MS). A novel alpha 2u was identified with a high score and this protein has not been previously described as present in the preputial gland of Indian commensal rats.This novel alpha 2u was then characterized by tandem mass spectrometry (MS/MS). Peptides with m/z values of 969, 1192, 1303 and 1876 were further fragmented with the aid of MS/MS and generated de novo sequences which provided additional evidence for the presence of alpha 2u in the preputial gland. Finally, we identified the presence of farnesol 1 and 2 bound to alpha 2u. The present investigation confirms the presence of alpha 2u (18.54 kDa) in the preputial gland of the Indian commensal rat and identifies farnesol 1 and 2 as probably involved in chemo-communication by the Indian commensal rat.Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper presents a glowworm swarm based algorithm that finds solutions to optimization of multiple optima continuous functions. The algorithm is a variant of a well known ant-colony optimization (ACO) technique, but with several significant modifications. Similar to how each moving region in the ACO technique is associated with a pheromone value, the agents in our algorithm carry a luminescence quantity along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luminescence and have a circular sensor range. The glowworms depend on a local-decision domain to compute their movements. Simulations demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a multimodal function. The above optimization scenario solves problems where a collection of autonomous robots is used to form a mobile sensor network. In particular, we address the problem of detecting multiple sources of a general nutrient profile that is distributed spatially on a two dimensional workspace using multiple robots.
Resumo:
Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.
Resumo:
Unlike queens of typical primitively eusocial species, Ropalidia marginata queens are docile and non-interactive, and hence cannot be using dominance to maintain their status. It appears that the queen maintains reproductive monopoly through a pheromone, of which the Dufour's gland is at least one source. Here, we reconfirm earlier results showing that queens and workers can be correctly classified on a discriminant function using the compositions of their respective Dufour's glands, and also demonstrate consistent queen-worker differences based on categories of compounds and on single compounds also in some cases. Since the queen pheromone is expected to be an honest signal of the fecundity of a queen, we investigate the correlation of Dufour's gland compounds with ovarian activation of queens. Our study shows that Dufour's gland compounds in R. marginata correlate with the state of ovarian activation of queens, suggesting that such compounds may portray the fecundity of a queen, and may indeed function as honest signals of fertility.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.
Resumo:
Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R.marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R.marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.
Resumo:
Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (P < 0.005), in terms of higher frequency of sniff, check and place behavior toward the dung of females close to pre-ovulatory period (follicular-phase) as compared to those in post-ovulatory period (luteal-phase). The response toward the follicular phase samples declined over repeated trials though was still significantly higher than the corresponding response toward the non-ovulatory phase in each of the trials performed. This is the first study to show that male Asian elephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ropalidia marginata is a primitively eusocial paper wasp found in peninsular India, where recent work suggests the role of the Dufour's gland hydrocarbons in queen signaling. It appears that the queen signals her presence to workers by rubbing the tip of her abdomen on the nest surface, thereby presumably applying her Dufour's gland secretion to the nest. Since the queen alone produces pheromone from the Dufour's gland and also applies it on the nest surface, the activity level of queen gland should be higher than that of worker gland, as the gland contents would have to get replenished periodically for queens but not for workers. The difference in activity level can be manifested in difference in Dufour's gland morphology, larger glands implying higher activity levels and smaller glands implying lower activity levels, as positive correlation between gland size and gland activity has been reported in exocrine glands of various taxa (including Hymenopteran insects). Hence we investigated whether there is any size difference between Dufour's glands of queens and workers in R. marginata. We found that there was no difference between queens and workers in their Dufour's gland size, implying that Dufour's gland activity and Dufour's gland size are likely to be uncorrelated in this species.