277 resultados para PHENYLEPHRINE
Resumo:
Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity.
Resumo:
Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE)-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension.
Resumo:
As respostas pós-juncionais mediadas por adrenorreceptores β2 (ARβ2), responsáveis pelo relaxamento do músculo liso, na veia safena do cão, estão ausentes à nascença. Pelo contrário, no rato recém-nascido já se verifica a estimulação da adenilil ciclase pela activação dos ARβ2. Não existem ainda estudos no coelho recém-nascido. O principal objectivo deste trabalho é avaliar as respostas pós-juncionais mediadas pelos ARβ2 em coelhos recém-nascidos e jovens e relacionar essas respostas com a adrenalina produzida nas glândulas supra-renais. Traçaram-se curvas de dose-resposta à isoprenalina (agonista β) utilizando-se anéis de aorta montados em banho de órgãos isolados ligado a um transdutor de força isométrica. As catecolaminas das supra-renais foram quantificadas por RP-HPLC-ED. Em aortas pré-contraídas com fenilefrina (agonista α1), a isoprenalina causou relaxamento total apenas em coelhos recém-nascidos (n=10). O relaxamento máximo nos coelhos jovens foi de 21±4% (n=23). A potência da isoprenalina foi maior nos recém-nascidos (EC50=1.15×10-8±7.2×10-10 M, n=10) do que nos coelhos jovens (EC50=1.29×10-7 ±4.7×10-9 M, n=23). O relaxamento máximo com isoprenalina, em aortas pré-contraídas com prostaglandina F2α (PGF2α), no grupo de coelhos recém-nascidos foi de 95±3.6% (n=16). O relaxamento máximo nos coelhos jovens foi de 43.7±8.6% (n=9). Na pré-contracção com PGF2α a potência da isoprenalina registou-se maior nos recémnascidos (EC50=9.59×10-9±4.0×10-10 M, n=16) do que nos coelhos jovens (EC50=2.13×10- 8±3.8×10-9 M, n=9), estando concordante com os resultados da pré-contracção com fenilefrina. Nas supra-renais dos recém-nascidos, o conteúdo de noradrenalina foi de 586±128 nmol/mg e da adrenalina foi de 1915±356 nmol/mg (n=4) e nos coelhos jovens foi de 112±12 nmol/mg e de 3644±403 nmol/mg (n=6), respectivamente. As respostas mediadas por ARβ2 no coelho desenvolvem-se mais cedo do que no cão, pois já estão presentes no nascimento. Tal como no rato, no coelho a adrenalina é já a catecolamina em maior quantidade à nascença, enquanto no cão é vestigial. Há uma relação temporal entre a síntese da adrenalina, a única catecolamina biogénica com alta afinidade para os ARβ2 e a maturação das respostas pós-juncionais mediadas por esses receptores. Um protocolo para experiências futuras destinadas a testar esta hipótese, com base no knockdown da Feniletanolamina-N-metiltransferase por RNAi foi elaborado e incluído neste documento.
Resumo:
A adenosina é um nucleósido ubíquo envolvido na regulação de controlo do tónus vascular do tecido cavernoso, desempenhando um papel importante na fisiopatologia da Disfunção Erétil (DE) resistente aos fármacos relaxantes musculares clássicos. Apesar da importância comprovada dos recetores da adenosina na fisiopatologia da DE no homem, pouca informação é conhecida no que diz respeito à expressão e localização dos recetores purinérgicos no Tecido Cavernoso de Ratazana (TCR). Neste trabalho avaliou-se o fenótipo dos recetores purinérgicos responsáveis pela regulação do tónus do tecido erétil de ratazana por imunofluorescência indireta aplicada à microscopia confocal em co-culturas de células endoteliais e musculares lisas do TCR. Para além da caracterização imunofenotípica, desenvolveu-se uma técnica que permite diferenciar funcionalmente em tempo real (por microscopia confocal funcional) células musculares lisas e células endoteliais isoladas de TCR em co-cultura marcadas com a sonda fluorescente Fluo-4NW. Esta técnica permite distinguir cada um dos subtipos celulares mediante o padrão e a magnitude das oscilações dos níveis intracelulares de Ca2+ ([Ca2+]i) em resposta ao ATP (agonista P2) e à fenilefrina (PE, agonista α-adrenérgico). Nas células musculares lisas, observou-se uma resposta mais acentuada ao agonista α-adrenérgico, PE, e uma resposta menos significativa ao ATP. O contrário foi observado relativamente às células endoteliais. A incubação das células musculares lisas e endoteliais com ATP (300 μM) causou um aumento dos níveis de [Ca2+]i. O efeito do ATP (300 μM) parece envolver a ativação de recetores dos subtipos P2X1 e P2X3 sensíveis ao bloqueio com NF023 (3μM) e A317491 (100 nM), respetivamente. Já o aumento dos níveis [Ca2+]i produzido pelo ADP (300 μM) parece envolver a ativação de recetores P2Y1, P2Y12 e P2Y13 mediante o antagonismo produzido pelos antagonistas MRS 2179 (0,3μM), AR-C66096 (0,1 μM) e MRS 2211 (10μM), respetivamente. Os dois tipos celulares expressam imunorreatividade contra recetores A2A, A2B, P2X1, P2X3, P2Y1, P2Y12 e P2Y13.
Resumo:
Ten male Wistar rats, chronically infected with Colombian, São Felipe (12SF) and Y strains of Trypanosoma cruzi and ten non-infected control animals were submitted to the bradycardia responsiveness test, an assessment of heart parasympathetic function, after phenylephrine injection. Six chagasic animals showed heart parasympathetic dysfuntion characterized by reduction in the index of bradycardia baroreflex responsiveness, as compared with the control group. Microscopic examination of the atrial heart ganglia of chagasic rats showed ganglionitis, but no statiscally significant reduction in the number of neurons.
Resumo:
Background:Sudden death is the leading cause of death in Chagas disease (CD), even in patients with preserved ejection fraction (EF), suggesting that destabilizing factors of the arrhythmogenic substrate (autonomic modulation) contribute to its occurrence.Objective:To determine baroreflex sensitivity (BRS) in patients with undetermined CD (GI), arrhythmogenic CD with nonsustained ventricular tachycardia (NSVT) (GII) and CD with spontaneous sustained ventricular tachycardia (STV) (GIII), to evaluate its association with the occurrence and complexity of arrhythmias.Method:Forty-two patients with CD underwent ECG and continuous and noninvasive BP monitoring (TASK force monitor). The following were determined: BRS (phenylephrine method); heart rate variability (HRV) on 24-h Holter; and EF (echocardiogram).Results:GIII had lower BRS (6.09 ms/mm Hg) as compared to GII (11.84) and GI (15.23). The difference was significant between GI and GIII (p = 0.01). Correlating BRS with the density of ventricular extrasystoles (VE), low VE density (<10/h) was associated with preserved BRS. Only 59% of the patients with high VE density (> 10/h) had preserved BRS (p = 0.003). Patients with depressed BRS had higher VE density (p = 0.01), regardless of the EF. The BRS was the only variable related to the occurrence of SVT (p = 0.028).Conclusion:The BRS is preserved in undetermined CD. The BRS impairment increases as disease progresses, being more severe in patients with more complex ventricular arrhythmias. The degree of autonomic dysfunction did not correlate with EF, but with the density and complexity of ventricular arrhythmias.
Resumo:
AbstractBackground:Hypertension is a public health problem and increases the incidence of cardiovascular diseases.Objective:To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats.Methods:Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP).Results:Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H.Conclusion:One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.
Resumo:
Abstract Background: Labdane-type diterpenes induce lower blood pressure via relaxation of vascular smooth muscle; however, there are no studies describing the effects of labdanes in hypertensive rats. Objective: The present study was designed to investigate the cardiovascular actions of the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid (labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension. Methods: Vascular reactivity experiments were performed in aortic rings isolated from 2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx) measurement was performed in aortas by colorimetric assay. Blood pressure measurements were performed in conscious rats. Results: Labda-15-oic acid (0.1-300 µmol/l) and forskolin (0.1 nmol/l - 1 µmol/l) relaxed endothelium-intact and endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid was more effective at inducing relaxation in endothelium-intact aortas from 2K pre-contracted with phenylephrine when compared to the endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid at inducing vascular relaxation in arteries from both 2K and 2K-1C rats. Labda-15-oic acid-induced increase in NOx levels was lower in arteries from 2K-1C rats when compared to 2K rats. Intravenous administration of labda-15-oic acid (0.3-3 mg/kg) or forskolin (0.1-1 mg/kg) induced hypotension in conscious 2K-1C and 2K rats. Conclusion: The present findings show that labda-15-oic acid induces vascular relaxation and hypotension in hypertensive rats.
Resumo:
The vasoconstrictor effect of hydrogen peroxide (H(2)O(2)) on isolated perfused rat kidney was investigated. H(2)O(2) induced vasoconstriction in the isolated rat kidney in a concentration-dependent manner. The vasoconstrictor effects of H(2)O(2) were completely inhibited by 1200 U/ml catalase. Endothelium-removal potentiated the renal response to H(2)O(2). The H(2)O(2) dose-response curve was not significantly modified by administration of the NO inhibitor L-NAME (10(-4) mol/l), whereas it was increased by the non-specific inhibitor of K+-channels, tetraethylammonium (3.10(-3) mol/l). Separately, removal of extracellular Ca(2+), administration of a mixture of calcium desensitizing agents (nitroprusside, papaverine, and diazoxide), and administration of a protein kinase C (PKC) inhibitor (chelerythrine, 10(-5) mol/l) each significantly attenuated the vasoconstrictor response to H(2)O(2), which was virtually suppressed when they were performed together. The pressor response to H(2)O(2) was not affected by: dimethyl sulfoxide (7.10(-5) mol/l) plus mannitol (3.10(-5) mol/l); intracellular Ca(2+) chelation using BAPTA (10(-5) mol/l); calcium store depletion after repeated doses of phenylephrine (10(-5) g/g kidney); or the presence of indomethacin (10(-5) mol/l), ODYA (2.10(-6) mol/l) or genistein (10(-5) mol/l). We conclude that the vasoconstrictor response to H(2)O(2) in the rat renal vasculature comprises the following components: 1) extracellular calcium influx, 2) activation of PKC, and 3) stimulation of pathways leading to sensitization of contractile elements to calcium. Moreover, a reduced pressor responsiveness to H(2)O(2) in female kidneys was observed.
Resumo:
Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.
Resumo:
The alpha1-adrenergic agonist phenylephrine stimulated phospholipase D (PLD) activity in Rat 1 fibroblasts transfected to express either the wild-type hamster alpha1B-adrenoceptor or a constitutively active mutant (CAM) form of this receptor. The EC50 for agonist stimulation of PLD activity was substantially lower at the CAM receptor than at the wild-type receptor as previously noted for phenylephrine stimulation of phosphoinositidase C activity. Sustained treatment of cells expressing the CAM alpha1B-adrenoceptor with phentolamine resulted in a marked up-regulation in levels of this receptor with half-maximal effects produced within 24 h and with an EC50 of approx. 40 nM. Such an up-regulation could be produced with a range of other ligands generally viewed as alpha1-adrenoceptor antagonists but equivalent treatment of cells expressing the wild-type alpha1B-adrenoceptor was unable to mimic these effects. After sustained treatment of the CAM alpha1B-adrenoceptor expressing cells with phentolamine, basal PLD activity was increased and phenylephrine was now able to stimulate PLD activity to greater levels than in vehicle-treated CAM alpha1B-adrenoceptor-expressing cells. The EC50 for phenylephrine stimulation of PLD activity was not altered, however, by phentolamine pretreatment and the associated up-regulation of the receptor. After phentolamine-induced up-regulation of basal PLD activity, a range of alpha1-antagonists were shown to possess the characteristics of inverse agonists of the CAM alpha1B-adrenoceptor as they were able to substantially decrease the elevated basal PLD activity.
Resumo:
In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without.
Resumo:
OBJECTIVE: To evaluate the results of Muller's muscle-conjunctival resection for correction of blepharoptosis and to discuss the advantages of this procedure. METHODS: 38 patients (39 eyelids) were submitted to Muller's muscle-conjunctival resection. Blepharoptosis varied from 1.0 mm to 3.0 mm (mean: 2.0 mm). The amount of eyelid elevation produced by phenylephrine guided the amount of tissue to be resected. RESULT: 33 eyelids (85%) treated with this procedure were cosmetically acceptable. CONCLUSIONS: Muller's muscle-conjunctival resection procedure is a relatively simple technique for blepharoptosis, with good levator function and positive 10% phenylephrine test. The advantages are: preservation of tarsus and predictable results.
Resumo:
BACKGROUND: The alpha1-adrenergic receptors (alpha1-ARs) play a key role in cardiovascular homeostasis. However, the functional role of alpha1-AR subtypes in vivo is still unclear. The aim of this study was to evaluate the cardiovascular influences of alpha1b-AR. METHODS AND RESULTS: In transgenic mice lacking alpha1-AR (KO) and their wild-type controls (WT), we evaluated blood pressure profile and cardiovascular remodeling induced by the chronic administration (18 days via osmotic pumps) of norepinephrine, angiotensin II, and subpressor doses of phenylephrine. Our results indicate that norepinephrine induced an increase in blood pressure levels only in WT mice. In contrast, the hypertensive state induced by angiotensin II was comparable between WT and KO mice. Phenylephrine did not modify blood pressure levels in either WT or KO mice. The cardiac hypertrophy and eutrophic vascular remodeling evoked by norepinephrine was observed only in WT mice, and this effect was independent of the hypertensive state because it was similar to that observed during subpressor phenylephrine infusion. Finally, the cardiac hypertrophy induced by thoracic aortic constriction was comparable between WT and KO mice. CONCLUSIONS: Our data demonstrate that the lack of alpha1b-AR protects from the chronic increase of arterial blood pressure induced by norepinephrine and concomitantly prevents cardiovascular remodeling evoked by adrenergic activation independently of blood pressure levels.
Resumo:
The antidiuretic effect of vasopressin is mediated by V2 receptors (V2R) that are located in kidney connecting tubules and collecting ducts. This study provides evidence that V2R signaling is negatively regulated by regulator of G protein signaling 2 (RGS2), a member of the family of RGS proteins. This study demonstrates that (1) RGS2 expression in the kidney is restricted to the vasopressin-sensitive part of the nephron (thick ascending limb, connecting tubule, and collecting duct); (2) expression of RGS2 is rapidly upregulated by vasopressin; (3) the vasopressin-dependent accumulation of cAMP, the principal messenger of V2R signaling, is significantly higher in collecting ducts that are microdissected from the RGS2(-/-) mice compared with their wild-type littermates; and (4) analysis of urine output of mice that were exposed to water restriction followed by acute water loading revealed that RGS2(-/-) mice exhibit an increased renal responsiveness to vasopressin. It is proposed that RGS2 is involved in negative feedback regulation of V2R signaling.