161 resultados para PEROXIDASES
Resumo:
O Brasil vem conquistando o mercado externo de sucos de frutos tropicais, com destaque para o açaí, muito procurado por ser conhecido como um alimento funcional, devido à concentração de antocianinas, fibras dietéticas e ácidos graxos monoinsaturados. Entretanto, o açaí é altamente perecível, necessitando de intervenções tecnológicas para prolongar sua vida de prateleira. Nesse caso, o uso da Alta Pressão Hidrostática (APH) pode ser uma alternativa aos processamentos tradicionais, por sua capacidade de ativar ou inativar enzimas. Peroxidases (POD) e polifenoloxidases (PFO) são as principais enzimas responsáveis por alterações indesejáveis das características originais de produtos vegetais e, com a sua inativação pela APH, pode-se evitar o escurecimento enzimático e manter as suas propriedades sensoriais. Com o objetivo de avaliar o efeito da APH em POD e PFO de polpa de açaí, adotaram-se as variáveis de pressão, temperatura e tempo. As atividades enzimáticas expressas em percentuais revelaram a POD mais estável, atingindo percentuais próximos a 100% (controle). As menores atividades foram a 90,74%, e quando se aplicaram 300 e 500 MPa a 25 °C por 5 minutos, as atividades aumentaram (112,34 e 132,98%, respectivamente). A atividade da PFO aumentou até 83,03% em relação ao controle, embora apresentasse inativação na maioria dos processos, evidenciando-se atividade a 35 °C/5 minutos de 53,25 e 53,75% a 300 e 500 MPa, respectivamente. Diante das condições experimentais, a APH mostrou-se eficaz na inativação parcial de oxidases na polpa de açaí.
Resumo:
Les peroxyrédoxines (PRXs) forment une famille de peroxydases communes à tous les organismes vivants et ubiquitaires dans la cellule. Leur particularité provient d’un ou deux résidus cystéines accomplissant un cycle d’oxydo-réduction à l’aide d’un donneur d’électron. Ces protéines thiols sensibles au potentiel redox sont impliquées dans le mécanisme de détoxification du H2O2, une molécule oxydante induite lors de situations de stress. Les PRXs pourraient être induites par le stress et régulées par phosphorylation. En effet, des expérimentations in vitro ont démontré que la nucléoside diphosphate kinase 1 (NDPK1) a la capacité de phosphoryler une PRX cytosolique de pomme de terre. Ce mémoire décrit les travaux expérimentaux effectués pour caractériser la fonction de la PRX. Pour cela, le clonage d’une isoforme a été effectué, suivi d’une caractérisation biochimique et d’une étude d’expression de la protéine. Les données de séquençage révèlent qu’il s’agit d’une PRX de type II phylogénétiquement liée aux PRXs cytosoliques. L’ADNc codant pour cette peroxyrédoxine (PRX1) a été cloné chez Solanum chacoense. Une protéine recombinante portant une étiquette (6xHis) en N-terminale a été produite. Des essais enzymatiques ont confirmé la fonction antioxydante de la protéine recombinante et un anticorps polyclonal a été généré chez le lapin puis utilisé en conjonction avec un anticorps anti-NDPK1 pour déterminer les patrons d’expression généraux de ces protéines chez Solanum lycopersicum et Solanum tuberosum lors de situations de stress. Les données démontrent que les deux protéines sont généralement co-exprimées mais pas co-régulées et que la PRX1 est induite en certaines situations de stress.
Resumo:
Crec que un resum lleugerament informal pot animar al lector a endinsar-se en el seriós contingut del llibre. S'aixeca el teló (fa uns tretze mil set cents milions d'anys) amb un "chupinazo" que deixa en ridícul als dels "sanfermines". L' entropia comença a augmentar ... i ja no pararà! L'empat inicial entre la matèria i l' antimateria es decanta a favor de la matèria, encara que per molt poc! Matèria i antimatèria s'anihilen, però el lleuger excés de matèria fa que en l'anihilació en quedin suficients traces per a que la funció pugui continuar. Existeix un antimón d'antimatèria que transcorre en un antitemps i en el qual un antiCastells format de D-aminoàcids i L-carbohidrats ha escrit un antillibre? L'univers ja s'ha refredat suficientment per a que el deuteri pugui perviure un xic: via lliure a la formació de l'heli-4 (etapa còsmica). La matèria s'organitza ostensiblement: neix el Sistema de Períodes (etapa estel·lar). Els estels exploten i la pols formada embruta tot l'espai interestel·lar (etapa interestel·lar). Visita al "zoo molecular": molt carboni i molt enllaç triple. Espècies molt reactives que no reaccionen ... per no trobar amb què! El futbol, va també envair l'espai? En el tebi oceà, la matèria continua la seva escalada de la complexitat (etapa planetària). Apareix la vida: però, què és la vida? Fi de l'evolució determinista i començament de l'evolució contingent (etapa biològica). Justificada alarma entre els anaerobis: qui ha deixat escapar aquest gas (oxigen) tan verinós? El miracle de la vida en un univers hostil. L'arsenal d'armes preventives i defensives: vitamines C i E, catalasa, peroxidases, dismutases superoxídiques, etc. La meravella del transport electrònic. Com es possible tanta perfecció? L'escalada de la complexitat prossegueix acceleradament. Finalment, s'arriba a l'Homo sapiens sapiens: podria no ser com és? Millor canviar l'entorn que canviar l'Homo: l'evolució biològica s'ha acabat. Comença l'evolució cultural o social. La possible existència de vida i de vida intel·ligent extra-terrestres. La inevitable protagonisme de la Química dels derivats del carboni. El Principi antropo-cosmològic: realment, estem sols?
Resumo:
To establish its significance during commercial breadmaking, dityrosine formation was quantified in flours and doughs of six commercial wheat types at various stages of the Chorleywood Bread Process. Dityrosine was formed mainly during mixing and baking, at the levels of nmol/g dry weight. Good breadmaking flours tended to exhibit higher dityrosine content in the final bread than low quality ones, but no relationship was found for dityrosine as a proportion of flour protein content, indicating that the latter was still a dominant factor in the analysis. There was no correlation between gluten yield of the six wheat types and their typical dityrosine concentrations, suggesting that dityrosine crosslinks were not a determinant factor for gluten formation. Ascorbic acid was found to inhibit dityrosine formation during mixing and proving, and have no significant effect on dityrosine in the final bread. Hydrogen peroxide promoted dityrosine formation, which suggests a radical mechanism involving endogenous peroxidases might be the responsible for dityrosine formation during breadmaking.
Resumo:
Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+](cyt)) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+] cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+] cyt, and may function as peroxidases in vitro.
Resumo:
Plant annexins are ubiquitous, soluble proteins capable of Ca2+-dependent and Ca2+-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.
Resumo:
Background: MS-based proteomics was applied to the analysis of the medicinal plant Artemisia annua, exploiting a recently published contig sequence database (Graham et al. (2010) Science 327, 328–331) and other genomic and proteomic sequence databases for comparison. A. annua is the predominant natural source of artemisinin, the precursor for artemisinin-based combination therapies (ACTs), which are the WHO-recommended treatment for P. falciparum malaria. Results: The comparison of various databases containing A. annua sequences (NCBInr/viridiplantae, UniProt/ viridiplantae, UniProt/A. annua, an A. annua trichome Trinity contig database, the above contig database and another A. annua EST database) revealed significant differences in respect of their suitability for proteomic analysis, showing that an organism-specific database that has undergone extensive curation, leading to longer contig sequences, can greatly increase the number of true positive protein identifications, while reducing the number of false positives. Compared to previously published data an order-of-magnitude more proteins have been identified from trichome-enriched A. annua samples, including proteins which are known to be involved in the biosynthesis of artemisinin, as well as other highly abundant proteins, which suggest additional enzymatic processes occurring within the trichomes that are important for the biosynthesis of artemisinin. Conclusions: The newly gained information allows for the possibility of an enzymatic pathway, utilizing peroxidases, for the less well understood final stages of artemisinin’s biosynthesis, as an alternative to the known non-enzymatic in vitro conversion of dihydroartemisinic acid to artemisinin. Data are available via ProteomeXchange with identifier PXD000703.
Resumo:
Given the high susceptibility of baby spinach leaves to thermal processing, the use of high hydrostatic pressure (HHP) is explored as a non-thermal blanching method. The effects of HHP were compared with thermal blanching by following residual activity of polyphenol oxidases and peroxidases, colour retention, chlorophyll and carotenoids content, antioxidant capacity and total polyphenols content. Spinach subjected to 700 MPa at 20 ºC for 15 min represented the best treatment among the conditions studied due to its balanced effect on target enzymes and quality indices. The latter treatment reduced enzyme activities of polyphenol oxidases and peroxidases by 86.4 and 76.7 %, respectively. Furthermore, leaves did not present changes in colour and an increase by 13.6 % and 15.6 % was found in chlorophyll and carotenoids content, respectively; regarding phytochemical compounds, retentions of 28.2 % of antioxidant capacity and 77.1 % of polyphenols content were found. Results demonstrated that HHP (700 MPa) at room temperature, when compared with thermal treatments, presented better retention of polyphenols, not significantly different chlorophyll and carotenoids content and no perceptible differences in the instrumental colour evaluated through ΔE value; therefore, it can be considered a realistic practical alternative to the widely used thermal blanching.
Resumo:
The Ohr (organic hydroperoxide resistance) family of 15-kDa Cys-based, thiol-dependent peroxidases is central to the bacterial response to stress induced by organic hydroperoxides but not by hydrogen peroxide. Ohr has a unique three-dimensional structure and requires dithiols, but not monothiols, to support its activity. However, the physiological reducing system of Ohr has not yet been identified. Here we show that lipoylated enzymes present in the bacterial extracts of Xylella fastidiosa interacted physically and functionally with this Cys-based peroxidase, whereas thioredoxin and glutathione systems failed to support Ohr peroxidase activity. Furthermore, we could reconstitute in vitro three lipoyl-dependent systems as the Ohr physiological reducing systems. We also showed that OsmC from Escherichia coli, an orthologue of Ohr from Xylella fastidiosa, is specifically reduced by lipoyl-dependent systems. These results represent the first description of a Cys-based peroxidase that is directly reduced by lipoylated enzymes.
Resumo:
The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.
Resumo:
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Resumo:
Copper sulfate is widely used in aquaculture. Exposure to this compound can be harmful to fish, resulting in oxidative metabolism alterations and gill tissue damage. Pacu, Piaractus mesopotamicus, (wt = 43.4 +/- A 3.35 g) were distributed in experimental tanks (n = 10; 180 l) and exposed for 48 h to control (without copper addition), 0.4Cu (0.4 mg l(-1)), 0CupH (without copper addition, pH = 5.0) and 0.4CupH (0.4 mg l(-1), pH = 5.0). In liver and red muscle, the superoxide dismutase (SOD) was responsive to the increases in the aquatic copper. The plasmatic intermediary metabolites and hematological variables in the fish of group 0.4Cu were similar to those of the control group. Conversely, the exposure to 0.4CupH caused an increase in the plasmatic lactate, number of red blood cells (RBC) and hemoglobin (Hb). Plasmatic copper concentration [Cu(p)] increased in group 0.4Cu and 0.4CupH, which is higher in group 0.4CupH, suggests an effect of water pH on the absorbed copper. Exposure to 0.4Cu and 0.4CupH resulted in a reduction in the Na(+)/K(+)-ATPase activity and an increase in metallothionein (MT) in the gills. Exposure to 0CupH caused a decrease in glucose and pyruvate concentrations and an increase in RBC, Hb, and the branchial Na(+)/K(+)-ATPase activity. These responses suggest that the fish triggered mechanisms to revert the blood acidosis, save energy and increase the oxygen uptake. MT was an effective biomarker, responding to copper in different pHs and dissolved oxygen. Combined-factors caused more significant disturbance in the biomarkers than single-factors.
Resumo:
In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.