963 resultados para PERMANENT MAGNETS
Resumo:
Objectives: To evaluate the effect of chemical degradation on bond strength of resin-modified glass-ionomer cements bonded to primary and permanent dentin. Methods: Class I cavities of permanent and primary extracted human molars were restored with two resin-modified glass-ionomer cements: Fuji 11 LC and Vitremer, and stored in water for 24 h. Half samples were immersed in 10% NaOCl aqueous solution for 5 h. Teeth were sectioned into beams and tested for microtensile bond strengths. Results were analyzed with multiple ANOVA and Tukey`s tests (p < 0.05). Analysis of debonded surfaces was performed by SEM. Results: 24 h bond strengths for Vitremer and Fuji 11 LC were similar. For Fuji 11, bond strength values were higher for primary than for permanent dentin. Vitremer bond strength was similar for both. Chemical degradation did not affect Fuji I] LC bond strength to dentin. However, decreases in bond strength were found for Vitremer groups after NaOCl immersion. Signs of glass ionomer-dentin interaction were evident by SEM analysis for Fuji 11 LC specimens. Conclusions: Vitremer and Fuji II presented similar bond strength at 24. Vitremer dentin bonds were prone to chemical degradation. Fuji II LC-dentin bonds showed typical features of glass-ionomer dentin interaction at the bonded interfaces, and were resistant to in vitro degradation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Impaction of permanent teeth represents a clinical challenge with regard to diagnosis, treatment plan, and prognosis. There is a close relationship between deciduous teeth and permanent teeth germ, and any injury in the deciduous dentition may influence the permanent teeth eruption. The extent of the damage caused to the permanent teeth germ depends on the patient age at the time of injury, type of trauma, severity, and direction of the impact. Conventional radiographic images are frequently used for diagnosis; however, recent developments in three-dimensional (3D) imaging systems have enabled dentistry to visualize structural changes effectively, with better contrast and more details, close to the reality. The cone-beam computed tomography (CBCT) has been used in the diagnosis and treatment plan of these impacted teeth. The purpose of the present case report is to describe a successful conservative management of a retained permanent maxillary lateral incisor with delayed root development after a trauma through the deciduous predecessor in a 9 year-old patient. After clinical and radiographic examination, a CBCT examination of the maxilla was requested to complement the diagnosis, providing an accurate 3D position of the retained tooth and its relationship to adjacent structures. The proposed treatment plan was the surgical exposure and orthodontic traction of the retained tooth. The lateral incisor spontaneously erupted after 6 months. Therefore, this case report suggests that permanent teeth with incomplete root formation have a great potential for spontaneous eruption because no tooth malposition or mechanical obstacles are observed.
Resumo:
A case of extensive crown fracture associated with intrusion of the permanent maxillary central incisors in an 8-year-old boy is reported. The treatment of both injured teeth included attempts of apexification and arrest of root resorption with calcium hydroxide. After 8 months of the trauma, there was no calcified barrier formation in the apex. Mineral trioxide aggregate (MTA) was then used as a filling material. At 15-month follow up, the teeth were asymptomatic and correctly sealed, the external inflammatory root resorption had stopped, and the radiolucent image had disappeared, which meant the initial healing of the periapical lesion. MTA may be considered as an alternative option for the treatment of traumatized and immature permanent teeth.
Resumo:
This case report outlines the sequel and possible management of a permanent tooth traumatized through the predecessor, a maxillary right primary central incisor that was avulsed and replanted by a dentist 1 h after the trauma in a 3-year-old girl. Three years later, discoloration and fistula were present, so the primary tooth was extracted. The patient did not come to the scheduled follow-ups to perform a clinical and radiographic control of the succeeding permanent incisor, and only returned when she was 10 years old. At that moment, the impaction and dilaceration of the maxillary right permanent central incisor were observed through radiographic examination. The dilacerated permanent tooth was then surgically removed, and an esthetic fixed appliance was constructed with the crown of the extracted tooth. Positive psychological influence of the treatment on this patient was also observed.
Resumo:
Purpose: The aim of this study was to assess the 6-year performance of the ART (atraumatic restorative treatment) approach in Class III restorations in permanent teeth. Materials and Methods: A total of 127 ART Class III restorations, using Ketac-Molar (3M ESPE) ionomer cement, was performed in 58 adult patients by one experienced operator in 1998. After a 6 years, 34 patients and 65 restorations were evaluated according to ART criteria. Two calibrated examiners carried out the evaluation. Data were analyzed by exact 95% Confidence Interval and Survival Analysis using the Jackknife method for standard error determination. Results: Among assessed restorations, 73.8% (95% CI = 61.5% to 86.2%) were in good condition and classified as successful, with a 67.6% (95% CI = 54.4% to 80.7%) cumulative survival rate. Failed restorations included 13.9% completely or partially missing restorations, 9.2% restorations that had been replaced by other treatment, 1.5% restorations with a large defect at the margin, and 1.5% restorations that presented high wear on the surface. No caries was observed even in those teeth in which restorations were absent. Conclusion: The 6-year success rate of the ART approach in anterior permanent teeth (Class III) was considered high.
Resumo:
Traumatic dental injuries are relatively frequent accidents that typically involve teeth in the maxillary anterior segment. The emergency treatment and the clinical decisions must be efficiently made at the time of injury, and there is a need for long-term follow-up because of the high incidence of complications. The aim of this article was to present the emergency and rehabilitation treatments of a multiple dentoalveolar trauma in the permanent dentition involving different extensions of enamel-dentin crown fracture, pulp exposure, and the avulsion of a canine. The treatment outcomes are reported up to the 4-year follow-up, and the clinical approaches and their rationale are discussed.
Resumo:
The design of open-access elliptical cross-section magnet systems has recently come under consideration. Obtaining values for the forces generated within these unusual magnets is important to progress the designs towards feasible instruments. This paper presents a novel and flexible method for the rapid computation of forces within elliptical magnets. The method is demonstrated by the analysis of a clinical magnetic resonance imaging magnet of elliptical cross-section and open design. The analysis reveals the non-symmetric nature of the generated Maxwell forces, which are an important consideration, particularly in the design of superconducting systems.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.
Resumo:
A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid.
Resumo:
Instituto Politécnico do Porto. Instituto Superior de Contabilidade e Administração do Porto