848 resultados para PERIPHERAL NEUROPATHY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To evaluate the spatio-temporal variables of gait and the isometric muscle strength component of the ankle in patients with peripheral diabetic neuropathy. Also, verify the relationship between these variables and gait parameters. Methods: This study involved 25 diabetic peripheral neuropathy (DPN) participants (62.4 ± 8.36 years) and 27 age-matched healthy control individuals (64.48 ± 6.21 years). The assessment of the spatio-temporal parameters of gait was performed using an electronic baropodometry treadmill. Prior to the collection data, each participant was instructed to walk on the treadmill in her/his habitual self-selected speed. Results: Diabetic neuropathy group showed impairment of gait, with a smaller stride and length speed of the cycle, and increased duration of support time. Restricted dorsiflexion mobility and increased plantarflexion mobility were found, with a decrease in muscle strength of the dorsiflexors and plantiflexors. There was a significant relationship between plantiflexor muscle strength and the length and speed of the gait cycle. Also the muscle strengths of the plantiflexors and dorsiflexors, and the range of motion of dorsiflexion were predictors of gait performance. Conclusions: The ankle, muscle strength and ankle mobility variables could explain changes in gait speed and range of motion in patients with DPN, allowing for the application of preventive strategies. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo teve como objetivos efetuar a caracterização molecular e imunológica da infecção pelo HTLV em 42 portadores assintomáticos da infecção pelo HTLV; e 19 portadores com sintomas neurológicos associados à infecção (16 com PET/MAH e outros três com neuropatia periférica). Outro grupo de 100 indivíduos soronegativos para HTLV procedentes de Belém-PA também foi analisado. As amostras de sangue foram processadas para realização da sorologia para HTLV, para contagem de linfócitos T CD4+ e T CD8+ (incluindo os soronegativos), para as técnicas de quantificação da carga proviral do HTLV e caracterização dos tipos e subtipos de HTLV circulantes nos infectados. Entre os 42 assintomáticos, foi positiva para o HTLV-1 35 amostras (83.3%), e para o HTLV-2 07 amostras (16.7%) (p < 0.0001). Entre os 19 sintomáticos, foi positiva para o HTLV-1 18 amostras (94.7%), e para o HTLV-2 01 amostra (5.3%) (p = 0.0002), onde as 16 amostras que tiveram diagnóstico de PET/MAH foram positivas HTLV-1. As análises filogenéticas das regiões 5’LTR agruparam 34 amostras (60%) de HTLV-1 no Subgrupo Transcontinental do Subtipo Cosmopolita; e 05 amostras (72.2%) de HTLV-2, no subtipo HTLV-2c. As médias de distribuição dos níveis de linfócitos T CD4+ e T CD8+ foi maior entre os sintomáticos, porém não havendo diferenças significantes quando comparados com os assintomáticos e controles soronegativos. Foi observada uma maior média de carga proviral entre os portadores sintomáticos quando comparados aos assintomáticos (p = 0.0123). Os resultados obtidos confirmam a ocorrência de PET/MAH associada à infecção pelo HTLV-1 na região de Belém-PA. A predominância do subtipo A de HTLV-1 corrobora outros resultados que demonstram a presença deste subtipo como o mais prevalente em áreas urbanas do Brasil, assim como a predominância de HTLV-2c entre as infectadas pelo HTLV-2 confirma a maior frequência deste subtipo na Amazônia brasileira, ressaltando que dentre as amostras de HTLV-2 está a de um paciente sintomático (neuropatia periférica). A maior média de carga proviral entre sintomáticos corrobora resultados de achados que associam esta variável ao desenvolvimento de PET/MAH entre os infectados pelo HTLV. Sendo assim, estes resultados indicam ainda a necessidade do monitoramento da descrição de casos de infecção pelo HTLV com diagnóstico clínicolaboratorial adequado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dapsona é uma sulfona sintética que é utilizada como um antibiótico em seres humanos e animais para prevenir e tratar doenças, incluindo hanseníase, tuberculose, malária, e pneumonia por Pneumocystis carinii e encefalites por Toxoplasma gondii em pacientes com síndrome da imunodeficiência adquirida (AIDS), bem como em doenças anti-inflamatórias como dermatite herpetiforme. No entanto, este fármaco também está associado com vários efeitos adversos, incluindo a hemólise relacionada com a dose, metemoglobinemia, psicose, neuropatia periférica, agranulocitose, anemia aplástica, síndrome de hipersensibilidade, síndrome de sulfona, e outros. Destes efeitos, a metemoglobinemia é o mais comum efeito adverso da dapsona, que leva a anemia funcional e hipóxia celular com sintomas de cianose, dores de cabeça, fadiga, taquicardia, fraqueza e tonturas. Assim, esta revisão sumariza informações relevantes sobre a estrutura, mecanismo de ação, indicação clínica, e reações adversas de dapsona.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Fisioterapia - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction In the Family Health Strategy (FHS), the treatment of Diabetes Mellitus (DM) includes education and lifestyle change strategies. Physiotherapists have a key role in this health setting. Objectives To implement actions of evaluation and guidelines for patients with type 2 DM who attend a Family Health Strategy (FHS), regarding diabetic foot and the practice of regular physical exercise in the control and prevention of the complications of Diabetes Mellitus. Methods 17 individuals from an FHS were evaluated, with the following procedures: clinical and anthropometric parameters, inspection, a questionnaire on diabetic neuropathy, tests of vibratory and tactile sensitivity, muscle function, range of motion, functional analysis, questions about exercise practice and guidance regarding controlling blood glucose and foot care. Results Deformities, dry skin, calluses, dehydration, ulceration, cracking and brittle nails were found. Peripheral neuropathy was not observed; tactile sensitivity was altered in the heel region and the vibratory sense was absent in 5% of individuals. A decrease in functionality of ankle movements was verified. Of the participants, 76% were sedentary, 24% knew about the benefits of practicing regular exercise, 25% had undergone a medical evaluation prior to performing physical exercise and, of these, 25% were supervised by a qualified professional. Discussion The implementation of physiotherapy actions in diabetics from an FHS was important for highlighting the presence of risk factors for diabetic complications. Conclusions Individuals attending the FHS need more information and programs for the prevention of diabetic complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoglycemia is a well recognized cause of acute symptomatic seizures. The fact that hypoglycemia can cause peripheral neuropathy is less appreciated. We describe a case of insulinoma associated peripheral neuropathy. A 17 year-old previously healthy man was referred for investigation of refractory epilepsy. A history of recurrent seizures, slowly progressive weakness of his feet and hands, and weight gain was obtained. Physical examination showed signs of a chronic sensory-motor polyneuropathy. He was diagnosed with insulinoma and primary hyperparathyroidism, characterizing multiple endocrine neoplasia, type 1 syndrome. Cases of insulinoma associated peripheral neuropathy are very rare. The more characteristic clinical picture appears to be distal weakness, worse in the intrinsic hand and feet muscles, and no or mild sensory signs. Peripheral nervous system symptoms may not completely resolve, despite removal of the cause of hyperinsulinism/hypoglycemia and full reversion of central nervous system symptoms. Mechanisms underlying hypoglycemic neuropathy are still poorly understood. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purposes: Anti-aquaporin 4 antibodies are specific markers for Devics disease. This study aimed to test if this high specificity holds in the context of a large spectrum of systemic autoimmune and non-autoimmune diseases. Methods: Anti-aquaporin-4 antibodies (NMO-IgG) were determined by indirect immunofluorescence (IIF) on mouse cerebellum in 673 samples, as follows: group I (clinically defined Devic's disease, n = 47); group II [ inflammatory/demyelinating central nervous system (CNS) diseases, n = 41]; group III (systemic and organ-specific autoimmune diseases, n = 250); group IV (chronic or acute viral diseases, n = 35); and group V (randomly selected samples from a general clinical laboratory, n = 300). Results: MNO-IgG was present in 40/47 patients with classic Devic's disease (85.1% sensitivity) and in 13/22 (59.1%) patients with disorders related to Devic's disease. The latter 13 positive samples had diagnosis of longitudinally extensive transverse myelitis (n = 10) and isolated idiopathic optic neuritis (n = 3). One patient with multiple sclerosis and none of the remaining 602 samples with autoimmune and miscellaneous diseases presented NMO-IgG (99.8% specificity). The autoimmune disease subset included five systemic lupus erythematosus individuals with isolated or combined optic neuritis and myelitis and four primary Sjogren's syndrome (SS) patients with cranial/peripheral neuropathy. Conclusions: The available data clearly point to the high specificity of anti-aquaporin-4 antibodies for Devic's disease and related syndromes also in the context of miscellaneous non-neurologic autoimmune and non-autoimmune disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type and frequency of systemic and neurologic manifestations of Beh double dagger et's disease (BD) vary with ethnicity. In Brazil, BD occurs as sporadic cases. We describe clinical and radiological features of 36 Brazilian patients of mixed ethnicity with neuro-Beh double dagger et's disease (NBD). Medical records of 178 BD patients were reviewed and 36 (20%) NBD patients were identified. Twenty-one NBD patients (58.3%) were female and 27 (75%) presented with parenchymal manifestations. Brainstem involvement was the most common neurologic syndrome (41.7%). Seizures (27.8%), isolated aseptic meningitis (16.7%), optic neuropathy (ON) (16.7%), cerebral venous thrombosis (CVT) (8.3%), peripheral neuropathy (2.8%), and spinal cord involvement (5.6%) were other neurologic manifestations observed among Brazilian NBD patients. Eighteen (50%) had at least one relapse, and isolated aseptic meningitis was the most common relapsing manifestation. No significant differences concerning the number of relapses between parenchymal and non-parenchymal groups were found. A multivariate model including disease duration, cell count in spinal fluid, cyclosporine use, immunosuppressive use at disease onset, age at NBD onset, and ON did not reveal any significant associations with NBD relapse. There was a low frequency of CVT and an unexpected higher number of isolated aseptic meningitis. Brazilian NBD patients present more parenchymal and atypical manifestations, and relapse more often than NBD patients from other populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniform conduction slowing has been considered a characteristic of inherited demyelinating neuropathies. We present an 18-year-old girl, born from first cousins, that presented a late motor and psychological development, cerebellar ataxia, facial diplegia, abnormal eye movement, scoliosis, and corpus callosum agenesis, whose compound muscle action potentials were slowed and dispersed. A mutation was found on KCC3 gene, confirming Andermann syndrome, a disease that must be included in the differential diagnosis of inherited neuropathies with non-uniform conduction slowing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33: 949-959, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.