930 resultados para PARTNER CHROMOSOMES
Resumo:
Objective To understand the trajectories that women go through from entering into to leaving relationships involving intimate partner violence (IPV), and identify the stages of the transition process. Method We utilized a constructivist paradigm based on grounded theory. We ensured that the ethical guidelines of the World Health Organization for research on domestic violence were followed. The analysis focused on narratives of 28 women survivors of IPV, obtained from in-depth interviews. Results The results showed that the trajectories experienced by women were marked by gender issues, (self) silencing, hope and suffering, which continued after the end of the IPV. Conclusion The transition process consists of four stages: entry - falls in love and becomes trapped; maintenance - silences own self, consents and remains in the relationship; decides to leave - faces the problems and struggles to be rescued; (re) balance - (re) finds herself with a new life. This (long) process was developed by wanting (and being able to have) self-determination.
Resumo:
RÉSUMÉ : Le sexe des individus peut être déterminé par l'environnement ou la génétique. Lorsque la détermination du sexe est génétique, il y a dans le génome, la présence de chromosomes spécifiques qui détermineront le sexe. Dans cette thèse, j'ai étudié l'évolution des chromosomes sexuels et dans quel contexte des marqueurs sur ces chromosomes peuvent être utilisés. Pour explorer la formation du chromosome Y, nous avons étudié les caractéristiques des chromosomes sexuels chez la rainette verte, Hyla arborea. Dans un premier temps, nous avons utilisé un marqueur situé sur les chromosomes sexuels X et Y chez plusieurs espèces appartenant au groupe de la rainette verte. Cela nous a permis de révéler chez toutes ces espèces une hétérogamétie mâle. Dans un deuxième temps, nous avons tiré profit de deux autres marqueurs situés sur les chromosomes sexuels pour montrer que la recombinaison est supprimée chez les mâles mais pas chez les femelles. Pour expliquer la réduction de la variabilité sur le chromosome Y, il n'est pas nécessaire d'invoquer le balayage sélectif ou la sélection d'arrière-plan : le nombre de copies plus petit du chromosome Y dans le génome et l'absence de recombinaison suffisent à l'expliquer. Nous avons également analysé plus en détail la suppression de la recombinaison chez les mâles de H. arborea. Les modèles classiques de l'évolution des chromosomes sexuels supposent que la taille de la région non-recombinante augmente progressivement pendant l'évolution du chromosome Y, due à l'accumulation de changements structuraux. Dans cette étude, nous montrons un modèle différent, à savoir que la recombinaison est supprimée ou diminuée non seulement sur les chromosomes sexuels mais aussi sur les autosomes chez les mâles, dû à l'action de modificateurs généraux. En utilisant des marqueurs localisés sur le chromosome Y, ainsi que sur l'ADN mitochondrial et le chromosome X, nous avons étudié l'histoire évolutive de la musaraigne musette, Crocidura russula. Cette étude illustre que les analyses génétiques avec plusieurs types de marqueurs génétiques peuvent faciliter l'interprétation de l'histoire évolutive des espèces, mais que l'utilisation des marqueurs sur les chromosomes X et Y pour des études phylogéographiques est limitée par le peu de polymorphisme observé sur ces deux types de marqueurs. Le même jeu de données combiné avec des simulations a été employé pour comprendre les facteurs responsables de la faible variabilité sur le chromosome Y qui peut être expliqué, dans notre étude, par la démographie et les traits d'histoire de vie de C. russula. SUMMARY The sex of an individual is determined either by its environment or its genetics. Genetic sex determination relies on the presence of specific chromosomes that will determine the sex of their bearer. In this thesis, I studied the evolution of the sex chromosomes and the context in which markers on this type of chromosomes can be used. To explore the evolution of a Y chromosome, we studied the nascent sex chromosomes in the European tree frog Hyla arborea. First; we amplified a sex specific marker in several related species of European tree frog and found a homogeneous pattern of male heterogamety. Secondly, we used two additional sex-specific markers to show that recombination is suppressed in males but not in females. There is, therefore, no need to invoke background selection or selective sweeps to explain the reduced genetic variability on the Y chromosome, because the lower number of copies of the Y chromosomes per breeding pair and the absence of recombination are sufficient. To further analyze the suppression of recombination in male European. tree frogs, we constructed a microsatellite linkage map for this species. Classical models of sex-chromosome evolution assume that the non-recombining region expands progressively during the long-term evolution of the Y chromosome, owing to the accumulation of structural changes. Here we show a strikingly different pattern: recombination is suppressed or depressed both on sex chromosomes and autosomes in the heterogametic sex, presumably due to the action of general modifiers. We investigated the evolutionary history of the greater white-toothed shrew, Crocidura russula, using markers on both sex chromosomes and mtDNA. This study illustrates that multilocus genetic analyses facilitates the interpretation of a species' evolutionary history. It also demonstrates that phylogeographic inferences from X and Y chromosomal markers are restricted by the low levels of observed polymorphism. Combining this genetic study with simulations, we determined that the demography and the life-history traits of this species can alone be responsible for the low Y diversity. In conclusion, this thesis shows that sex chromosomes, in combination with autosomes or mtDNA, are necessary to understand the evolution of sex chromosomes and to precisely infer the population history of a species.
Resumo:
Abstract OBJECTIVE Analyzing the elements that compose the environment of pregnant women who have experienced intimate partner violence in the light of Levine's Nursing Theory. METHOD A qualitative, descriptive study conducted from September to January 2012, with nine pregnant women in a Municipal Health Center in Rio de Janeiro. The interviews were semi-structured and individual. The theoretical framework was based on Levine's Nursing Theory. RESULTS Thematic analysis evidenced the elements that composed the external environment, such as violence perpetrated by intimate partners before and during pregnancy, violence in childhood and adolescence, alcohol consumption and drug use by the partner, unemployment, low education and economic dependency, which affected health and posed risks to the pregnancy. CONCLUSION Violence perpetrated by an intimate partner was the main external factor that influenced the internal environment with repercussions on health. This theory represents a tool in nursing care which will aid in detecting cases and the fight against violence.
Resumo:
Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination pathway.
Resumo:
Bcl10, a caspase recruitment domain (CARD)-containing protein identified from a breakpoint in mucosa-associated lymphoid tissue (MALT) B lymphomas, is essential for antigen-receptor-mediated nuclear factor kappaB (NF-kappaB) activation in lymphocytes. We have identified a novel CARD-containing protein and interaction partner of Bcl10, named Carma1. Carma1 is predominantly expressed in lymphocytes and represents a new member of the membrane-associated guanylate kinase family. Carma1 binds Bcl10 via its CARD motif and induces translocation of Bcl10 from the cytoplasm into perinuclear structures. Moreover, expression of Carma1 induces phosphorylation of Bcl10 and activation of the transcription factor NF-kappaB. We propose that Carma1 is a crucial component of a novel Bcl10-dependent signaling pathway in T-cells that leads to the activation of NF-kappaB.
Resumo:
X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.
Resumo:
Contrasting with the situation found in birds and mammals, sex chromosomes are generally homomorphic in poikilothermic vertebrates. This homomorphy was recently shown to result from occasional X-Y recombinations (not from turnovers) in several European species of tree frogs (Hyla arborea, H. intermedia and H. molleri). Because of recombination, however, alleles at sex-linked loci were rarely diagnostic at the population level; support for sex linkage had to rely on multilocus associations, combined with occasional sex differences in allelic frequencies. Here, we use direct evidence, obtained from anatomical and histological analyses of offspring with known pedigrees, to show that the Eastern tree frog (H. orientalis) shares the same pair of sex chromosomes, with identical patterns of male heterogamety and complete absence of X-Y recombination in males. Conservation of an ancestral pair of sex chromosomes, regularly rejuvenated via occasional X-Y recombination, seems thus a widespread pattern among Hyla species. Sibship analyses also identified discrepancies between genotypic and phenotypic sex among offspring, associated with abnormal gonadal development, suggesting a role for sexually antagonistic genes on the sex chromosomes.
Resumo:
To control introduced exotic species that have predominantly genetic, but environmentally reversible, sex determination (e.g. many species of fish), Gutierrez and Teem recently modeled the use of carriers of Trojan Y chromosomes--individuals who are phenotypically sex reversed from their genotype. Repeated introduction of YY females into wild populations should produce extreme male-biased sex ratios and eventual elimination of XX females, thus leading to population extinction. Analogous dynamics are expected in systems in which sex determination is influenced by one or a few major genes on autosomes.
Resumo:
The banding pattern (G-, C-, AgNOR-staining) was described in karyotypes of Apodemus alpicola Heinrich, 1952 and A. microps Kratochvil et Rosicky, 1952 collected from the Alps and central Europe, Distinct differences between the two species were revealed in the distribution of C-heterochromatic regions in autosomes and the sex chromosomes, and the distribution of nucleolar organizer regions (NORs). Extensive variation in the distribution pattern of C-heterochromatin and NORs obviously exists among the wood mice of the subgenus Sylvaemus, and individual species can be distinguished according to a specific variation pattern. However, it seems premature to designate individual karyotypic forms as separate species, because the extent of overall geographical interpopulation variation is still not sufficiently known.
Resumo:
Understanding the structure of interphase chromosomes is essential to elucidate regulatory mechanisms of gene expression. During recent years, high-throughput DNA sequencing expanded the power of chromosome conformation capture (3C) methods that provide information about reciprocal spatial proximity of chromosomal loci. Since 2012, it is known that entire chromatin in interphase chromosomes is organized into regions with strongly increased frequency of internal contacts. These regions, with the average size of ∼1 Mb, were named topological domains. More recent studies demonstrated presence of unconstrained supercoiling in interphase chromosomes. Using Brownian dynamics simulations, we show here that by including supercoiling into models of topological domains one can reproduce and thus provide possible explanations of several experimentally observed characteristics of interphase chromosomes, such as their complex contact maps.
Resumo:
Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X-Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X-Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 10(5) times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes.
Resumo:
This packet gives information on how to preserve, conserve, and protect Iowa's rich natural resources by working together in communities, staying committed to bettering Iowa's future, encouraging volunteerism, enlisting support from a variety of sources, setting environmental examples ourselves and developing positive awareness programs.