895 resultados para Oxygen.
Resumo:
Production of citric acid from crude glycerol from biodiesel industry, in batch cultures of Yarrowia lipolytica W29 was performed in a lab-scale stirred tank bioreactor in order to assess the effect of oxygen mass transfer rate in this bioprocess. An empirical correlation was proposed to describe oxygen volumetric mass transfer coefficient (kLa) as a function of operating conditions (stirring speed and specific air flow rate) and cellular density. kLa increased according with a power function with specific power input and superficial gas velocity, and slightly decreased with cellular density. The increase of initial kLa from 7 h-1 to 55 h-1 led to 7.8-fold increase of citric acid final concentration. Experiments were also performed at controlled dissolved oxygen (DO) and citric acid concentration increased with DO up to 60% of saturation. Thus, due to the simpler operation setting an optimal kLa than at controlled DO, it can be concluded that kLa is an adequate parameter for the optimization of citric acid production from crude glycerol by Y. lipolytica and to be considered in bioprocess scale-up. Our empirical correlation, considering the operating conditions and cellular density, will be a valid tool for this purpose.
Resumo:
Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.
Resumo:
PURPOSE: To compare peak exercise oxygen consumption (VO2peak) of healthy individuals with asymptomatic individuals with probable heart disease. METHODS: Ninety-eight men were evaluated. They were divided into two groups: 1) 39 healthy individuals (group N) with an age range of 50±4.6 years; and 2) 59 asymptomatic individuals with signs of atherosclerotic and/or hypertensive heart disease (group C) with an age range of 51.9±10.4 years. In regard to age, height, body surface area, percentage of fat, lean body mass, and daily physical activity, both groups were statistically similar. Environmental conditions during the ergometric test were also controlled. RESULTS: Maximal aerobic power (watts), VO2peak, maximal heart rate, and maximal pulmonary ventilation were lower in group C (p<0.01) than in group N; weight, however, was lower in group N (p=0.031) than in group C. Differences in the respiratory gas exchange index, heart rate at rest, and the maximal double product of the two groups were not statistically significant. CONCLUSION: Signs of probable heart disease, even though asymptomatic, may reduce the functional capacity, perhaps due to the lower maximal cardiac output and/or muscle metabolic changes.
Resumo:
OBJECTIVE: To compare the effects of 3 types of noninvasive respiratory support systems in the treatment of acute pulmonary edema: oxygen therapy (O2), continuous positive airway pressure, and bilevel positive pressure ventilation. METHODS: We studied prospectively 26 patients with acute pulmonary edema, who were randomized into 1 of 3 types of respiratory support groups. Age was 69±7 years. Ten patients were treated with oxygen, 9 with continuous positive airway pressure, and 7 with noninvasive bilevel positive pressure ventilation. All patients received medicamentous therapy according to the Advanced Cardiac Life Support protocol. Our primary aim was to assess the need for orotracheal intubation. We also assessed the following: heart and respiration rates, blood pressure, PaO2, PaCO2, and pH at begining, and at 10 and 60 minutes after starting the protocol. RESULTS: At 10 minutes, the patients in the bilevel positive pressure ventilation group had the highest PaO2 and the lowest respiration rates; the patients in the O2 group had the highest PaCO2 and the lowest pH (p<0.05). Four patients in the O2 group, 3 patients in the continuous positive pressure group, and none in the bilevel positive pressure ventilation group were intubated (p<0.05). CONCLUSION: Noninvasive bilevel positive pressure ventilation was effective in the treatment of acute cardiogenic pulmonary edema, accelerated the recovery of vital signs and blood gas data, and avoided intubation.
Resumo:
Dissertação de mestrado em Bioengineering
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Organotypic hippocampal slice cultures, neurogenesis, posterior periventricle, oxygen-glucose deprivation, microglia, inflammation
Resumo:
AbstractBackground:Aerobic fitness, assessed by measuring VO2max in maximum cardiopulmonary exercise testing (CPX) or by estimating VO2max through the use of equations in exercise testing, is a predictor of mortality. However, the error resulting from this estimate in a given individual can be high, affecting clinical decisions.Objective:To determine the error of estimate of VO2max in cycle ergometry in a population attending clinical exercise testing laboratories, and to propose sex-specific equations to minimize that error.Methods:This study assessed 1715 adults (18 to 91 years, 68% men) undertaking maximum CPX in a lower limbs cycle ergometer (LLCE) with ramp protocol. The percentage error (E%) between measured VO2max and that estimated from the modified ACSM equation (Lang et al. MSSE, 1992) was calculated. Then, estimation equations were developed: 1) for all the population tested (C-GENERAL); and 2) separately by sex (C-MEN and C-WOMEN).Results:Measured VO2max was higher in men than in WOMEN: -29.4 ± 10.5 and 24.2 ± 9.2 mL.(kg.min)-1 (p < 0.01). The equations for estimating VO2max [in mL.(kg.min)-1] were: C-GENERAL = [final workload (W)/body weight (kg)] x 10.483 + 7; C-MEN = [final workload (W)/body weight (kg)] x 10.791 + 7; and C-WOMEN = [final workload (W)/body weight (kg)] x 9.820 + 7. The E% for MEN was: -3.4 ± 13.4% (modified ACSM); 1.2 ± 13.2% (C-GENERAL); and -0.9 ± 13.4% (C-MEN) (p < 0.01). For WOMEN: -14.7 ± 17.4% (modified ACSM); -6.3 ± 16.5% (C-GENERAL); and -1.7 ± 16.2% (C-WOMEN) (p < 0.01).Conclusion:The error of estimate of VO2max by use of sex-specific equations was reduced, but not eliminated, in exercise tests on LLCE.
Resumo:
Abstract Background: Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective: To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods: The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results: The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions: In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
Crystallization temperatures of the oceanic carbonatites of Fuerteventura, Canary Islands, have been determined from oxygen isotope fractionations between calcite, silicate minerals (feldspar, pyroxene, biotite, and zircon) and magnetite. The measured fractionations have been interpreted in the light of late stage interactions with meteoric and/or magmatic water. Cathodoluminescence characteristics were investigated for the carbonatite minerals in order to determine the extent of alteration and to select unaltered samples. Oxygen isotope fractionations of minerals of unaltered samples yield crystallization temperatures between 450 and 960degreesC (average 710degreesC). The highest temperature is obtained from pyroxene-calcite pairs. The above range is in agreement with other carbonatite thermometric Studies. This is the first study that provides oxygen isotope data coupled with a CL study on carbonatite-related zircon. The CL pictures revealed that the zircon is broken and altered in the carbonatites and in associated syenites. Regarding geological field evidences of syenite-carbonatite relationship and the close agreement of published zircon U/Pb and whole rock and biotite K/Ar and Ar-Ar age data, the most probable process is early zircon crystallization from the syenite magma and late-stage reworking during magma evolution and carbonatite segregation. The oxygen isotope fractionations between zircon and other carbonatite minerals (calcite and pyroxene) support the assumption that the zircon would correspond to the early crystallization of syenite-carbonatite magmas.