998 resultados para Oxygen Isotope Geochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral delta18O. At 29°S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral delta18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral delta18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral delta18O demonstrate a high variability in spectral composition through time. Oscillations in the 5-7-y, 14-15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral delta18O suggests a rise in SST by 0.6°C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4°C since AD 1795 is inferred from the coral record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monthly delta18O records of 2 coral colonies (Porites cf. lutea and P. cf. nodifera) from different localities (Aqaba and Eilat) from the northern Gulf of Aqaba, Red Sea, were calibrated with recorded sea surface temperatures (SST) between 1988 and 2000. The results show high correlation coefficients between SST and delta18O. Seasonal variations of coral delta18O in both locations could explain 91% of the recorded SST. Different delta18O/SST relations from both colonies and from the same colonies were obtained, indicating that delta18O from coral skeletons were subject to an extension rate effect. Significant delta18O depletions are associated with high extension rates and higher values with low extension rates. The relation between coral skeletal delta18O and extension rate is not linear and can be described by a simple exponential model. An inverse relationship extends over extension rates from 1 to 5 mm/yr, while for more rapidly growing corals and portions of colonies the relation is constant and the extension rate does not appear to have a significant effect. We recommend that delta18O values be obtained from fast-growing corals or from portions in which the isotopic disequilibrium is fairly constant (extension rate >5 mm/yr). The results show that interspecific differences in corals may produce a significant delta18O profile offset between 2 colonies that is independent of environmental and extension-rate effects. We conclude that the rate of skeletal extension and the species of coral involved have an important influence on coral delta18O and must be considered when using delta18O records for paleoclimatic reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study documents the biological signatures impressed upon the sedimentary record underlying both the 5°N upwelling system of the Somali Current and the equatorial area of the Somali Basin out of the upwelling influence. The evolution of these two distinct hydrographic systems is compared for the last 160 kyr. Correspondence and cluster analyses are performed on combined radiolarian and planktonic foraminiferal quantitative data in order to study the changes of the planktonic assemblages through time and space. The Upwelling Radiolarian Index (URI) is used as a productivity proxy. The water temperature and hydrographic structure of the upper water masses appear to be the major factors controlling the distribution patterns of the fauna. The relative abundances of three groups of foraminifera, cold water form (dextral N. pachyderma), mixed layer dwellers (G. trilobus, G. ruber, G. sacculifer, G. conglobatus, and G. glutinata), and thermocline dwellers (G. menardii, G. tumida, N. dutertrei, G. crassaformis, and P. obliquiloculata), follow distinct evolutionary patterns at the two sites during the last 160 kyr. At the equatorial site (core MD 85668), downcore fluctuations in the relative abundances of the three groups are closely related to the glacial/interglacial cyclicity and provide some insights into the interpretation of hydrographic changes. The dominance of the mixed layer foraminifera at the transition intervals between isotope stages 6/5 and 2/1, combined with weak URI values, is thought to reflect the reorganization of the oceanographic circulation. These short-term events (with a duration of < 5000 year) could be related to the rapid inflow of oxygen-depleted water through the Indonesian straits as a result of sea level rise during deglaciation. Underneath the 5°N gyre (core MD 85674), the response to global climatic changes is overprinted by the regional effect of the Somalian upwelling, which has been persistent over the last 160 kyr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal tests of a sediment core from southwestern Skagerrak (northeastern North Sea, 420 m water depth) were investigated for their ratio of stable oxygen isotopes. During modern times sudden drops in temperature and salinity of Skagerrak deep waters point to advection-induced cascades of colder and denser central North Sea waters entering the Skagerrak. These temperature drops, which are recorded in benthic foraminiferal tests via the stable oxygen isotopic composition, were used to reconstruct deep-water renewal in the Skagerrak. In a second step we will show that, at least during the last 1200 years, Skagerrak deep-water renewal is triggered by the negative phase of the North Atlantic Oscillation (NAO). The NAO exerts a strong influence on the climate of northwestern Europe. It is currently under debate if the long-term variability of the NAO is capable of influencing Northern Hemisphere climate on long timescales. The data presented here cannot reinforce these speculations. Our data show that most of the 'Little Ice Age' was dominated by comparably warm deep-water temperatures. However, we did find extraordinary strong temperature differences between central North Sea waters and North Atlantic water masses during this time interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty ice cores drilled in medium to high accumulation areas of the Greenland ice sheet have been used to extract seasonally resolved stable isotope records. Relationships between the seasonal stable isotope data and Greenland and Icelandic temperatures as well as atmospheric flow are investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The linear correlation between the first principal component of the winter season stable isotope data and Greenland winter temperatures is 0.71 for seasonally resolved data and 0.83 for decadally filtered data. The summer season stable isotope data display higher correlations with Stykkisholmur summer temperatures and North Atlantic SST conditions than with SW Greenland temperatures. The linear correlation between Stykkisholmur summer temperatures and the first principal component of the summer season stable isotope data is 0.56, increasing to 0.66 for decadally filtered data. Winter season stable isotope data from ice core records that reach more than 1400 years back in time suggest that the warm period that began in the 1920s raised southern Greenland temperatures to the same level as those that prevailed during the warmest intervals of the Medieval Warm Period some 900-1300 years ago. This observation is supported by a southern Greenland ice core borehole temperature inversion. As Greenland borehole temperature inversions are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales.