389 resultados para Ornidia obesa
Resumo:
Ocean Drilling Program Hole 803D (Leg 130) from the western tropical Pacific (Ontong Java Plateau) and Hole 628A (Leg 101) from the western subtropical North Atlantic (Little Bahama Bank) contain rich assemblages of planktonic foraminifers. The uppermost Eocene-basal Miocene section of Hole 803D is apparently complete, whereas the Oligocene section of Hole 628A contains three unconformities based on planktonic foraminiferal evidence. Anomalous ranges are recorded for Chiloguembelina cubensis and Globigerinoides primordius. C. cubensis is found to range throughout the upper Oligocene of both sites, and G. primordius first occurs near the base of upper Oligocene Zone P22 in Hole 628A. Paleomagnetic stratigraphy provides constraints on the last occurrence (LO) of Subbotina angiporoides, the first occurrence (FO) of Globigerina angulisuturalis, the FO of Globigerinoides primordius, the FO of Paragloborotalia pseudokugleri, and the LO of Chiloguembelina cubensis. In general, taxon ranges, total diversity, and the composition of the planktonic foraminiferal assemblages from Holes 628A and 803D are similar. Differences in the composition of planktonic foraminiferal assemblages between the two sites are interpreted to be primarily the result of enhanced dissolution at Site 803 (e.g., paucity of Globigerina angulisuturalis and absence of G. ciperoensis). However, the greater abundances of Subbotina angiporoides in subtropical Hole 628A and Paragloborotalia opima in tropical Hole 803D are probably related to oceanographic differences between the two low-latitude sites. Comparison between the low and southern high latitudes illustrates some similarities in the composition of Oligocene planktonic foraminiferal assemblages as well as some important differences. Species such as Pseudohastigerina spp., Turborotalia increbescens, "Turborotalia" ampliapertura, Paragloborotalia opima, P. pseudokugleri, P. semivera/mayeri, Globigerinella obesa, Globigerina angulisuturalis, G. gortanii, G. ouachitaensis, G. sellii, G. tapuriensis, G. tripartita, G. pseudovenezuelana, Subbotina? eocaena and S.? yeguaensis are absent or have rare occurrences in the subantarctic Oligocene assemblages. Biogeographic gradients, although not as pronounced as during the late Neogene, were nonetheless significant during the Oligocene.
Resumo:
During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).
Resumo:
Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.
Resumo:
Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.
Resumo:
We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.
Resumo:
Oxygen and carbon isotope measurements have been made in picked planktonic and benthonic foraminifers from the five sites drilled on Leg 74, covering the whole Cenozoic. For the Neogene, the coverage gives good information on the development of the vertical temperature structure of Atlantic deep water. For the Paleogene, vertical gradients were weak and it is possible to combine data from different sites to obtain a very detailed record of both the temperature and carbon isotope history of Atlantic deep waters.
Resumo:
Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species) and Octocorallia (2 species). The phylum Echinodermata was the most diverse in species number (47 species), with asteroids (25 species) and ophiuroids (13 species) being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species). Multidimensional scaling ordination (MDS) separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the pres- ence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.
Resumo:
Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.
Resumo:
In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.