984 resultados para Organophilic Montmorillonite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) for all soils has traditionally been assumed to be similar to that developed by the United States Salinity Laboratory (USSL) in 1954. However, under certain conditions, this relationship has been shown not to be constant, but to vary with both ionic strength and clay mineralogy. We conducted a detailed experiment to determine the effect of ionic strength on the Na+-Ca2+ exchange of four clay minerals (kaolinite, illite, pyrophyllite, and montmorillonite), with results related to the diffuse double-layer (DDL) model. Clays in which external exchange sites dominated (kaolinite and pyrophyllite) tended to show an overall preference for Na+, with the magnitude of this preference increasing with decreasing ESP. For these external surfaces, increases in ionic strength were found to increase preference for Na+. Although illite (2:1 non-expanding mineral) was expected to be dominated by external surfaces, this clay displayed an overall preference for Ca2+, possibly indicating the opening of quasicrystals and the formation of internal exchange surfaces. For the expanding 2:1 clay, montmorillonite, Na+-Ca2+ exchange varied due to the formation of quasicrystals (and internal exchange surfaces) from individual clay platelets. At small ionic strength and large ESP, the clay platelets dispersed and were dominated by external exchange surfaces (displaying preference for Na+). However, as ionic strength increased and ESP decreased, quasicrystals (and internal exchange surfaces) formed, and preference for Ca2+ increased. Therefore, the relationship between SAR and ESP is not constant and should be determined directly for the soil of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N-2 and O-2 at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and -79 degrees C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and -79 degrees C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications. (C) 1999 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-step method of loading controlled amounts of transition metal cations into alumina pillared clays (Al-PILCs) is proposed. First, calcined Al-PILC was dispersed into an aqueous solution of sodium or ammonium ions. Increasing the pH of the dispersion resulted in an increase in the amount of cations loaded into the clay. The ion-doped Al-PILC was then exchanged with an aqueous solution of transition metal salt at a pH of similar to 4.5 to replace Na+ or NH4+ ions by transition metal cations. Analytical techniques such as atomic absorption spectroscopy, X-ray diffraction, diffuse reflectance-ultraviolet-visible spectroscopy, as well as N-2 adsorption were used to characterize the PILC products with and without the loading of metal ions. The introduced transition metal species exist in the forms of hydrated ions in the PILC hosts. The content of transition metal ions in the final product increased with the amount of Na+ or NH4+ loaded in the first step so that by controlling the pH of the dispersion in the first step, one can control the doping amounts of transition metal cations into Al-PILCs. A sample containing 0.125 mmol/g of nickel was thus obtained, which is similar to 3 times of that obtained by directly exchanging Al-PILC with Ni(NO3)(2) solution, while the pillared layered structures of the Al-PILC remained. The porosity analysis using N-2 adsorption data indicated that most of the doped transition metal ions dispersed homogeneously in the micropores of the Al-PILC, significantly affecting the micropore structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal oxide pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst. This paper is a continuous work from Kloprogge's review (J.T. Kloprogge, J. Porous Mater. 5, 5 1998) on the synthesis and properties of smectites and related PILCs and will focus on the diverse applications of clay pillared with different types of metal oxides in the heterogeneous catalysis area and adsorption area. The relation between the performance of the PILC and its physico-chemical features will be addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the catalytic activity of manganese and iron porphyrins, Mn and Fe(TFPP)Cl, covalently immobilized on the aminofunctionalized supports montmorillonite K-10 (MontX) and silica (SilX), where X= 1 or 2 represents the length of the organic chain (""arms"") binding the metalloporphyrin to the support. These systems were characterized by UV-vis and Electronic Paramagnetic Resonance (EPR), and they were used as catalysts in the oxidation of carbamazepine (CBZ) by the oxidants iodosylbenzene (PhIO) and hydrogen peroxide. The manganese porphyrin (MnP) catalysts proved to be efficient and selective for the epoxide, the main CBZ metabolite in natural systems. MnMont1 was an excellent catalyst when PhIO was used as oxidant, even better than the same MnP in homogeneous system. Supports bearing short ""arms"" led to the best yields. Although H2O2 is an environmentally friendly oxidant, low product yields were obtained when it was employed in CBZ oxidation. Fe(TFPP)CI immobilized on aminofunctionalized supports was not an efficient catalyst, probably due to the presence of Fe(H) species in the matrix, which led to the less reactive intermediate PFe(IV)(O). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the organophilic property of MCM-41 was studied and compared with hydrophobic silicalite-l using adsorption and temperature-programmed desorption (TPD) methods. The surface heterogeneity of MCM-41 was evaluated in terms of activation energy for desorption (E-d) and isosteric heat of adsorption (q(st)). Results show that MCM-41 has a higher affinity to polar organic compounds than to non-polar organics while silicalite-l has a higher affinity to non-polar organic compounds than to polar organics. This organophilic behaviour of MCM-41 is attributed to its surface heterogeneity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titania sol-pillared clay (TiO2 PILC) and silica-titania sol-pillared clay (SiO2-TiO2 PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO2 PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO2-TiO2 PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quaternary ammonium surfactants were used to control the pore structure of bentonite intercalated with a mixed hydro-sol of silicon and titanium. Porous clay heterostructures of alumina and laponite were prepared in the presence of polyethylene oxide (PEO) surfactants. Participation of the surfactants in the synthesis results in significant changes in the structure of porous clay products. Surfactants are involved in different mechanisms, In the case of bentonite, the mean size of the framework pores was directly proportional to the chain length of the quaternary ammonium surfactants. This indicates a molecular templating mechanism, similar to that observed in the synthesis of MCM41. However, in the case of laponite, the size and volume of the mesopores were related to the amount of PEO surfactants used. By using an appropriate surfactant, we can obtain highly porous clays with various pore structures. Introducing surfactants during intercalation is an efficient strategy for the molecular engineering of porous clay adsorbents and catalysts. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports some research work that has been done to support Geological Survey's field work for the 1:50.000 Carta Geológica de Portugal, (sheets 19-C Figueira da Foz and 19-D Coimbra-Lousã). Its main purpose was to establish the age of some continental formations. At Cerâmica do Mondego, Ld.ª near Taveiro, two series were observed. The lower one is mainly pelitic, montmorillonite being predominant. It also includes some sandy beds and channel deposits with high energy sediments (conglomerate with limestone pebbles). The upper series lies unconformably upon the former, and there is a neat discontinuity surface between the two. It mainly consists of sands, kaolinite being the most abundant of the clay minerals. This seems to indicate an intensive weathering, an acid, well drained environment and transportation by quite high energy running waters. No fossils were recorded. Preliminary paleontological results are presented, along with some data concerning other localities (Aveiro, etc.). Fossils found in the lower series are: gastropoda (Bulimus gaudryi, TV. 15 bed), several vertebrates (TV. 18), fishes (TV. 19?) and plants (TV. 19-TV. 24). Vertebrata belong to the same fauna as that from Vizo, Aveiro, etc. The presence of mammals is most important as only a single tooth was previously Know in Europe (Southern France) in Late Cretaceous formations. Elsewhere there are some mammalian remains in Peru besides the rich assemblages found in the USA and Mongolia. Plants are representative of the «Debeya flora» well known at several localities in Beira Litoral province, in «Buçaco sandstones», and in Lisbon's «Basaltic Complex». The most important stratigraphical conclusion is that the lower series is Upper Campanian and/or Maastrichtian in age, and not Tertiary as sometimes it has been considered. As at Aveiro, «Bebeya flora» occurs in-beds somewhat higher than those with the Aveiro-Vizo-Taveiro vertebrate fauna. Correlation with other «Debeya flora» localities are now more clear. Data concerning Taveiro lower series, in the whole, point out to a rather warm (and moist?) environment in an occasionally (seasonally?) flooded region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports some research work that has been done to support Geological Survey's field work for the 1:50.000 Carta Geológica de Portugal, (sheets 19-C Figueira da Foz and 19-D Coimbra-Lousã). Its main purpose was to establish the age of some continental formations. At Cerâmica do Mondego, Lda. near Taveiro, two series were observed. The lower one is mainly pelitic, montmorillonite being predominant. It also includes some sandy beds and channel deposits with high energy sediments (conglomerate with limestone pebbles). The upper series lies unconformably upon the former, and there is a neat discontinuity surface between the two. It mainly consists of sands, kaolinite being the most abundant of the clay minerals. This seems to indicate an intensive weathering, an acid, well drained environment and transportation by quite high energy running waters. No fossils were recorded. Preliminary paleontological results are presented, along with some data concerning other localities (Aveiro, etc). Fossils found in the lower series are: gastropoda (Bulimus gaudryi, TV. 15 bed), several vertebrates (TV. 18), fishes (TV. 19?) and plants (TV. 19-TV. 24). Vertebrata belong to the same fauna as that from Vizo, Aveiro, etc. The presence of mammals is most important as only a single tooth was previously know in Europe (Southern France) in Late Cretaceous formations. Elsewhere there are some mammalian remains in Peru besides the rich assemblages found in the USA and Mongolia. Plants are representative of the «Debeya flora» well known at several localities in Beira Litoral province, in «Buçaco sandstones», and in Lisbon's «Basaltic Complex». The most important stratigraphical conclusion is that the lower series is Upper Campanian and/or Maastrichtian in age, and not Tertiary as sometimes it has been considered. As at Aveiro, «Bebeya flora» occurs in-beds somewhat higher than those with the Aveiro-Vizo-Taveiro vertebrate fauna. Correlation with other «Debeya flora» localities are now more clear. Data concerning Taveiro lower series, in the whole, point out to a rather warm (and moist?) environment in an occasionally (seasonally?) flooded region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studied materials were sampled from several conglomerate and carbonate sandstone units, overlapped for 23 meters. This formation represents a debris flow dominated alluvial fan alternating with quiet sedimentary conditions. These deposits of probably Paleogene age were placed upon mafic and ultramafic rocks that are the exclusive source of sediments. Optical and SEM identification, microanalysis and XRD studies (with decomposition procedures) of clay fractions obtained after high-speed centrifugation were performed in order to characterise the clay minerals content. The results of the analytical program allowed the establishment of the following remarks: a) Fe-rich montmorillonite dominance over paligorskite, chlorite, chlorite-smectite mixed-layers, serpentine and talc; b) smectites in the 12.4 - 15 A range, expanding to about 17 A after EG treatment; c) serpentine and talc as secondary minerals in the interior of altered clasts; d) chlorite and clorite smectite mixed-layer compositions in the borders of the clasts and in the cement. The composition of sediments results from coarse clasts eroded from mafic and ultramafic rocks and clayey material. Clasts show evidences of post-depositional weathering (coatings of chlorite and smectite). Clayey material has the contributions of i) inherired chlorite, smectite and chlorite-smectite mixed-layers; ii ) authigenic crystallisation of Fe-montmorillonite (due to availability of Fe in the crystallising solutions following previous weathering events); iii) authigenic paligorskite associated to a carbonate cement.