994 resultados para Organic Carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p <0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As-OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As/OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments. We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As?OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon-flow from plant roots to the rhizosphere provides a major source of nutrients for the soil microbial population. However, quantification of carbon-flow is problematic due to its complex composition. This study investigated the potential of lux-marked Pseudomonas fluorescens to discriminate between forms of carbon present in the rhizosphere by measuring the light response to a range of carbon compounds. Results indicate that bioluminescence of short-term carbon-starved P. fluorescens is dependent upon the source and concentration of carbon. This system, therefore, has the potential to both quantify and qualify organic acids present in rhizodeposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates of soil organic carbon (SOC) stocks and changes under different land use systems can help determine vulnerability to land degradation. Such information is important for countries in and areas with high susceptibility to desertification. SOC stocks, and predicted changes between 2000 and 2030, were determined at the national scale for Jordan using The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. For the purpose of this study, Jordan was divided into three natural regions (The Jordan Valley, the Uplands and the Badia) and three developmental regions (North, Middle and South). Based on this division, Jordan was divided into five zones (based on the dominant land use): the Jordan Valley, the North Uplands, the Middle Uplands, the South Uplands and the Badia. This information was merged using GIS, along with a map of rainfall isohyets, to produce a map with 498 polygons. Each of these was given a unique ID, a land management unit identifier and was characterized in terms of its dominant soil type. Historical land use data, current land use and future land use change scenarios were also assembled, forming major inputs of the modelling system. The GEFSOC Modelling System was then run to produce C stocks in Jordan for the years 1990, 2000 and 2030. The results were compared with conventional methods of estimating carbon stocks, such as the mapping based SOTER method. The results of these comparisons showed that the model runs are acceptable, taking into consideration the limited availability of long-term experimental soil data that can be used to validate them. The main findings of this research show that between 2000 and 2030, SOC may increase in heavily used areas under irrigation and will likely decrease in grazed rangelands that cover most of Jordan giving an overall decrease in total SOC over time if the land is indeed used under the estimated forms of land use. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa) - wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30-40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57-1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model, RothPC-1, is described for the turnover of organic C in the top metre of soil. RothPC-1 is a version of RothC-26.3, an earlier model for the turnover of C in topsoils. In RothPC-1 two extra parameters are used to model turnover in the top metre of soil: one, p, which moves organic C down the profile by an advective process, and the other, s, which slows decomposition with depth. RothPC-1 is parameterized and tested using measurements (described in Part 1, this issue) of total organic C and radiocarbon on soil profiles from the Rothamsted long-term field experiments, collected over a period of more than 100 years. RothPC-1 gives fits to measurements of organic C and radiocarbon in the 0-23, 23-46, 46-69 and 69-92 cm layers of soil that are almost all within (or close to) measurement error in two areas of regenerating woodland (Geescroft and Broadbalk Wildernesses) and an area of cultivated land from the Broadbalk Continuous Wheat Experiment. The fits to old grassland (the Park Grass Experiment) are less close. Two other sites that provide the requisite pre- and post-bomb data are also fitted; a prairie Chernozem from Russia and an annual grassland from California. Roth-PC-1 gives a close fit to measurements of organic C and radiocarbon down the Chernozem profile, provided that allowance is made for soil age; with the annual grassland the fit is acceptable in the upper part of the profile, but not in the clay-rich Bt horizon below. Calculations suggest that treating the top metre of soil as a homogeneous unit will greatly overestimate the effects of global warming in accelerating the decomposition of soil C and hence on the enhanced release of CO2 from soil organic matter; more realistic estimates will be obtained from multi-layer models such as RothPC-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under the United Nations Framework Convention on Climate Change (UNFCCC), Non-Annex 1 countries such as Kenya are obliged to report green house gas (GHG) emissions from all sources where possible, including those from soils as a result of changes in land use or land management. At present, the convention encourages countries to estimate emissions using the most advanced methods possible, given the country circumstances and resources. Estimates of soil organic carbon (SOC) stocks and changes were made for Kenya using the Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. The tool conducts analysis using three methods: (1) the Century general ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The required datasets included: land use history, monthly mean precipitation, monthly mean minimum and maximum temperatures for all the agro-climatic zones of Kenya and historical vegetation cover. Soil C stocks of 1.4-2.0 Pg (0-20 cm), compared well with a Soil and Terrain (SOTER) based approach that estimated similar to .8-2.0 Pg (0-30 cm). In 1990 48% of the country had SOC stocks of < 18 t C ha(-1) and 20% of the country had SOC stocks of 18-30 t C ha(-1), whereas in 2000 56% of the country had SOC stocks of < 18 t C ha(-1) and 31% of the country had SOC stocks of 18-30 t C ha(-1). Conversion of natural vegetation to annual crops led to the greatest soil C losses. Simulations suggest that soil C losses remain substantial throughout the modelling period of 1990-2030. All three methods involved in the GEFSOC System estimated that there would be a net loss of soil C between 2000 and 2030 in Kenya. The decline was more marked with RothC than with Century or the IPCC method. In non-hydric soils the SOC change rates were more pronounced in high sandy soils compared to high clay soils in most land use systems. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.