866 resultados para Ordinary Least Squares Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the fundamental econometric models in finance is predictive regression. The standard least squares method produces biased coefficient estimates when the regressor is persistent and its innovations are correlated with those of the dependent variable. This article proposes a general and convenient method based on the jackknife technique to tackle the estimation problem. The proposed method reduces the bias for both single- and multiple-regressor models and for both short- and long-horizon regressions. The effectiveness of the proposed method is demonstrated by simulations. An empirical application to equity premium prediction using the dividend yield and the short rate highlights the differences between the results by the standard approach and those by the bias-reduced estimator. The significant predictive variables under the ordinary least squares become insignificant after adjusting for the finite-sample bias. These discrepancies suggest that bias reduction in predictive regressions is important in practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Language has been of interest to numerous economists since the late 20th century, with the majority of the studies focusing on its effects on immigrants’ labour market outcomes; earnings in particular. However, language is an endogenous variable, which along with its susceptibility to measurement error causes biases in ordinary-least-squares estimates. The instrumental variables method overcomes the shortcomings of ordinary least squares in modelling endogenous explanatory variables. In this dissertation, age at arrival combined with country of origin form an instrument creating a difference-in-difference scenario, to address the issue of endogeneity and attenuation error in language proficiency. The first half of the study aims to investigate the extent to which English speaking ability of immigrants improves their labour market outcomes and social assimilation in Australia, with the use of the 2006 Census. The findings have provided evidence that support the earlier studies. As expected, immigrants in Australia with better language proficiency are able to earn higher income, attain higher level of education, have higher probability of completing tertiary studies, and have more hours of work per week. Language proficiency also improves social integration, leading to higher probability of marriage to a native and higher probability of obtaining citizenship. The second half of the study further investigates whether language proficiency has similar effects on a migrant’s physical and mental wellbeing, health care access and lifestyle choices, with the use of three National Health Surveys. However, only limited evidence has been found with respect to the hypothesised causal relationship between language and health for Australian immigrants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the analysis of tagging data, it has been found that the least-squares method, based on the increment function known as the Fabens method, produces biased estimates because individual variability in growth is not allowed for. This paper modifies the Fabens method to account for individual variability in the length asymptote. Significance tests using t-statistics or log-likelihood ratio statistics may be applied to show the level of individual variability. Simulation results indicate that the modified method reduces the biases in the estimates to negligible proportions. Tagging data from tiger prawns (Penaeus esculentus and Penaeus semisulcatus) and rock lobster (Panulirus ornatus) are analysed as an illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) sensors are a class of chemical sensor that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares. Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) sensors are a class of chemical sensors that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares (PLS). Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity. Special Issue: Selected Paper from the 12th International Symposium on Olfaction and Electronic Noses - ISOEN 2007, International Symposium on Olfaction and Electronic Noses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New algorithms for the continuous wavelet transform are developed that are easy to apply, each consisting of a single-pass finite impulse response (FIR) filter, and several times faster than the fastest existing algorithms. The single-pass filter, named WT-FIR-1, is made possible by applying constraint equations to least-squares estimation of filter coefficients, which removes the need for separate low-pass and high-pass filters. Non-dyadic two-scale relations are developed and it is shown that filters based on them can work more efficiently than dyadic ones. Example applications to the Mexican hat wavelet are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador: