842 resultados para Optimization algorithm


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biogeography is the science that studies the geographical distribution and the migration of species in an ecosystem. Biogeography-based optimization (BBO) is a recently developed global optimization algorithm as a generalization of biogeography to evolutionary algorithm and has shown its ability to solve complex optimization problems. BBO employs a migration operator to share information between the problem solutions. The problem solutions are identified as habitat, and the sharing of features is called migration. In this paper, a multiobjective BBO, combined with a predator-prey (PPBBO) approach, is proposed and validated in the constrained design of a brushless dc wheel motor. The results demonstrated that the proposed PPBBO approach converged to promising solutions in terms of quality and dominance when compared with the classical BBO in a multiobjective version.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper shows the Particle Swarm Optimization algorithm with a Differential Evolution. Each candidate solution is sampled uniformly in [!5,5] D, whereDdenotes the search space dimension, and the evolution is performed with a classical PSO algorithm and a classical DE/x/1 algorithm according to a random threshold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper shows the Particle Swarm Optimization algorithm with a Differential Evolution. Each candidate solution is sampled in the interval [?5, 5] D where D indicates the dimension of the search space, and the evolution is performed with a classical PSO algorithm and a classical DE/x/1 algorithm according to a random threshold. Moreover, this paper provides concepts to deal with non-linear optimization through the use of PSO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Limit equilibrium is a common method used to analyze the stability of a slope, and minimization of the factor of safety or identification of critical slip surfaces is a classical geotechnical problem in the context of limit equilibrium methods for slope stability analyses. A mutative scale chaos optimization algorithm is employed in this study to locate the noncircular critical slip surface with Spencer’s method being employed to compute the factor of safety. Four examples from the literature—one homogeneous slope and three layered slopes—are employed to identify the efficiency and accuracy of this approach. Results indicate that the algorithm is flexible and that although it does not generally provide the minimum FS, it provides results that are close to the minimum, an improvement over other solutions proposed in the literature and with small relative errors with respect to other minimum factor of safety (FS) values reported in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Póster presentado en Escape 22, European Symposium on Computer Aided Process Engineering, University College London, UK, 17-20 June 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Paper submitted to AIChE 2012 Annual Meeting: Energy Efficiency by Process Intensification, Pittsburgh, PA, October 28-November 2, 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a study of the computational cost of the GNG3D algorithm for mesh optimization. This algorithm has been implemented taking as a basis a new method which is based on neural networks and consists on two differentiated phases: an optimization phase and a reconstruction phase. The optimization phase is developed applying an optimization algorithm based on the Growing Neural Gas model, which constitutes an unsupervised incremental clustering algorithm. The primary goal of this phase is to obtain a simplified set of vertices representing the best approximation of the original 3D object. In the reconstruction phase we use the information provided by the optimization algorithm to reconstruct the faces thus obtaining the optimized mesh. The computational cost of both phases is calculated, showing some examples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are many models in the literature that have been proposed in the last decades aimed at assessing the reliability, availability and maintainability (RAM) of safety equipment, many of them with a focus on their use to assess the risk level of a technological system or to search for appropriate design and/or surveillance and maintenance policies in order to assure that an optimum level of RAM of safety systems is kept during all the plant operational life. This paper proposes a new approach for RAM modelling that accounts for equipment ageing and maintenance and testing effectiveness of equipment consisting of multiple items in an integrated manner. This model is then used to perform the simultaneous optimization of testing and maintenance for ageing equipment consisting of multiple items. An example of application is provided, which considers a simplified High Pressure Injection System (HPIS) of a typical Power Water Reactor (PWR). Basically, this system consists of motor driven pumps (MDP) and motor operated valves (MOV), where both types of components consists of two items each. These components present different failure and cause modes and behaviours, and they also undertake complex test and maintenance activities depending on the item involved. The results of the example of application demonstrate that the optimization algorithm provide the best solutions when the optimization problem is formulated and solved considering full flexibility in the implementation of testing and maintenance activities taking part of such an integrated RAM model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurement and variation control of geometrical Key Characteristics (KCs), such as flatness and gap of joint faces, coaxiality of cabin sections, is the crucial issue in large components assembly from the aerospace industry. Aiming to control geometrical KCs and to attain the best fit of posture, an optimization algorithm based on KCs for large components assembly is proposed. This approach regards the posture best fit, which is a key activity in Measurement Aided Assembly (MAA), as a two-phase optimal problem. In the first phase, the global measurement coordinate system of digital model and shop floor is unified with minimum error based on singular value decomposition, and the current posture of components being assembly is optimally solved in terms of minimum variation of all reference points. In the second phase, the best posture of the movable component is optimally determined by minimizing multiple KCs' variation with the constraints that every KC respectively conforms to its product specification. The optimal models and the process procedures for these two-phase optimal problems based on Particle Swarm Optimization (PSO) are proposed. In each model, every posture to be calculated is modeled as a 6 dimensional particle (three movement and three rotation parameters). Finally, an example that two cabin sections of satellite mainframe structure are being assembled is selected to verify the effectiveness of the proposed approach, models and algorithms. The experiment result shows the approach is promising and will provide a foundation for further study and application. © 2013 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J05, 62G35