943 resultados para Optimal solutions
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice
Resumo:
For optimal solutions in health care, decision makers inevitably must evaluate trade-offs, which call for multi-attribute valuation methods. Researchers have proposed using best-worst scaling (BWS) methods which seek to extract information from respondents by asking them to identify the best and worst items in each choice set. While a companion paper describes the different types of BWS, application and their advantages and downsides, this contribution expounds their relationships with microeconomic theory, which also have implications for statistical inference. This article devotes to the microeconomic foundations of preference measurement, also addressing issues such as scale invariance and scale heterogeneity. Furthermore the paper discusses the basics of preference measurement using rating, ranking and stated choice data in the light of the findings of the preceding section. Moreover the paper gives an introduction to the use of stated choice data and juxtaposes BWS with the microeconomic foundations.
Resumo:
This paper presents a method for generating Pareto-optimal solutions in multi-party negotiations. In this iterative method, decision makers (DMs) formulate proposals that yield a minimum payoff to their opponents. Each proposal belongs to the efficient frontier, DMs try to adjust to a common one. In this setting, each DM is supposed to have a given bargaining power. More precisely each DM is supposed to have a subjective estimate of the power of the different parties. We study the convergence of the method, and provide examples where there is no possible agreement resulting from it.
Resumo:
Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.
Resumo:
The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.
Resumo:
Muitos dos problemas de otimização em grafos reduzem-se à determinação de um subconjunto de vértices de cardinalidade máxima que induza um subgrafo k-regular. Uma vez que a determinação da ordem de um subgrafo induzido k-regular de maior ordem é, em geral, um problema NP-difícil, são deduzidos novos majorantes, a determinar em tempo polinomial, que em muitos casos constituam boas aproximações das respetivas soluções ótimas. Introduzem-se majorantes espetrais usando uma abordagem baseada em técnicas de programação convexa e estabelecem-se condições necessárias e suficientes para que sejam atingidos. Adicionalmente, introduzem-se majorantes baseados no espetro das matrizes de adjacência, laplaciana e laplaciana sem sinal. É ainda apresentado um algoritmo não polinomial para a determinação de umsubconjunto de vértices de umgrafo que induz umsubgrafo k-regular de ordem máxima para uma classe particular de grafos. Finalmente, faz-se um estudo computacional comparativo com vários majorantes e apresentam-se algumas conclusões.
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com especialização em Energia, Climatização e Refrigeração
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.
Resumo:
La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.
Resumo:
Depuis quelques années, la recherche dans le domaine des réseaux maillés sans fil ("Wireless Mesh Network (WMN)" en anglais) suscite un grand intérêt auprès de la communauté des chercheurs en télécommunications. Ceci est dû aux nombreux avantages que la technologie WMN offre, telles que l'installation facile et peu coûteuse, la connectivité fiable et l'interopérabilité flexible avec d'autres réseaux existants (réseaux Wi-Fi, réseaux WiMax, réseaux cellulaires, réseaux de capteurs, etc.). Cependant, plusieurs problèmes restent encore à résoudre comme le passage à l'échelle, la sécurité, la qualité de service (QdS), la gestion des ressources, etc. Ces problèmes persistent pour les WMNs, d'autant plus que le nombre des utilisateurs va en se multipliant. Il faut donc penser à améliorer les protocoles existants ou à en concevoir de nouveaux. L'objectif de notre recherche est de résoudre certaines des limitations rencontrées à l'heure actuelle dans les WMNs et d'améliorer la QdS des applications multimédia temps-réel (par exemple, la voix). Le travail de recherche de cette thèse sera divisé essentiellement en trois principaux volets: le contrôle d‟admission du trafic, la différentiation du trafic et la réaffectation adaptative des canaux lors de la présence du trafic en relève ("handoff" en anglais). Dans le premier volet, nous proposons un mécanisme distribué de contrôle d'admission se basant sur le concept des cliques (une clique correspond à un sous-ensemble de liens logiques qui interfèrent les uns avec les autres) dans un réseau à multiples-sauts, multiples-radios et multiples-canaux, appelé RCAC. Nous proposons en particulier un modèle analytique qui calcule le ratio approprié d'admission du trafic et qui garantit une probabilité de perte de paquets dans le réseau n'excédant pas un seuil prédéfini. Le mécanisme RCAC permet d‟assurer la QdS requise pour les flux entrants, sans dégrader la QdS des flux existants. Il permet aussi d‟assurer la QdS en termes de longueur du délai de bout en bout pour les divers flux. Le deuxième volet traite de la différentiation de services dans le protocole IEEE 802.11s afin de permettre une meilleure QdS, notamment pour les applications avec des contraintes temporelles (par exemple, voix, visioconférence). À cet égard, nous proposons un mécanisme d'ajustement de tranches de temps ("time-slots"), selon la classe de service, ED-MDA (Enhanced Differentiated-Mesh Deterministic Access), combiné à un algorithme efficace de contrôle d'admission EAC (Efficient Admission Control), afin de permettre une utilisation élevée et efficace des ressources. Le mécanisme EAC prend en compte le trafic en relève et lui attribue une priorité supérieure par rapport au nouveau trafic pour minimiser les interruptions de communications en cours. Dans le troisième volet, nous nous intéressons à minimiser le surcoût et le délai de re-routage des utilisateurs mobiles et/ou des applications multimédia en réaffectant les canaux dans les WMNs à Multiples-Radios (MR-WMNs). En premier lieu, nous proposons un modèle d'optimisation qui maximise le débit, améliore l'équité entre utilisateurs et minimise le surcoût dû à la relève des appels. Ce modèle a été résolu par le logiciel CPLEX pour un nombre limité de noeuds. En second lieu, nous élaborons des heuristiques/méta-heuristiques centralisées pour permettre de résoudre ce modèle pour des réseaux de taille réelle. Finalement, nous proposons un algorithme pour réaffecter en temps-réel et de façon prudente les canaux aux interfaces. Cet algorithme a pour objectif de minimiser le surcoût et le délai du re-routage spécialement du trafic dynamique généré par les appels en relève. Ensuite, ce mécanisme est amélioré en prenant en compte l‟équilibrage de la charge entre cliques.