985 resultados para Optimal monitoring
Resumo:
The paper presents the analysis of an important historical building: the Saint James Theater in the city of Corfù (Greece) actually used as the Municipality House. The building, located in the center of the city, is made of carves stones and is characterized by a stocky shape and by the presence of wooden floors. The study deals with the structural identification of such structure through the analysis of its ambient vibrations recorded by means of accelerometers with high accuracy. A full dynamic testing was developed using ambient vibrations to identify the main modal parameters and to make a non-destructive characterization of this building. The results of these dynamic tests are compared with the modal analysis of a complex finite element (FE) simulation of the structure. This analysis may present several problems and uncertainties for this stocky building. Due to the presence of wooden floors, the local modes can be highly excited and, as a consequence, the evaluation of the structural modal parameters presents some difficulties.
Resumo:
Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.
Resumo:
The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).
Resumo:
The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^
Resumo:
Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.
Resumo:
The Ingold port adaption of a free beam NIR spectrometer is tailored for optimal bioprocess monitoring and control. The device shows an excellent signal to noise ratio dedicated to a large free aperture and therefore a large sample volume. This can be seen particularly in the batch trajectories which show a high reproducibility. The robust and compact design withstands rough process environments as well as SIP/CIP cycles. Robust free beam NIR process analyzers are indispensable tools within the PAT/QbD framework for realtime process monitoring and control. They enable multiparametric, non-invasive measurements of analyte concentrations and process trajectories. Free beam NIR spectrometers are an ideal tool to define golden batches and process borders in the sense of QbD. Moreover, sophisticated data analysis both quantitative and MSPC yields directly to a far better process understanding. Information can be provided online in easy to interpret graphs which allow the operator to make fast and knowledge-based decisions. This finally leads to higher stability in process operation, better performance and less failed batches.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.