900 resultados para Optimal Feedback Control
Resumo:
The integrated control of nitrate recirculation and external carbon addition in a predenitrification biological wastewater treatment system is studied. The proposed control structure consists of four feedback control loops, which manipulate the nitrate recirculation and the carbon dosage flows in a highly coordinated manner such that the consumption of external carbon is minimised while the nitrate discharge limits (based on both grab and composite samples) are met. The control system requires the measurement of the nitrate concentrations at the end of both the anoxic and the aerobic zones. Distinct from ordinary control systems, which typically minimise the variation in the controlled variables, the proposed control system essentially maximises the diurnal variation of the effluent nitrate concentration and through this maximises the use of influent COD for denitrification, thus minimising the requirement for external carbon source. Simulation studies using a commonly accepted simulation benchmark show that the controlled system consistently achieves the designated effluent quality with minimum costs.
Resumo:
Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
Resumo:
A fuzzy linguistic controller has been developed and implemented with the aim to cope with interactions between control loops due to coupling effects. To access the performance of the proposed approach several experiments have also been conducted using the classical PID controllers in the control loops. A mixing process has been used as test bed of all controllers experimented and the corresponding dynamic model has been derived. The successful results achieved with the fuzzy linguistic controllers suggests that they can be an alternative to classical controllers when in the presence of process plants where automatic control as to cope with coupling effects between control loops. © 2014 IEEE.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática
Resumo:
Digital Microfluidics (DMF) is a second generation technique, derived from the conventional microfluidics that instead of using continuous liquid fluxes, it uses only individual droplets driven by external electric signals. In this thesis a new DMF control/sensing system for visualization, droplet control (movement, dispensing, merging and splitting) and real time impedance measurement have been developed. The software for the proposed system was implemented in MATLAB with a graphical user interface. An Arduino was used as control board and dedicated circuits for voltage switching and contacts were designed and implemented in printed circuit boards. A high resolution camera was integrated for visualization. In our new approach, the DMF chips are driven by a dual-tone signal where the sum of two independent ac signals (one for droplet operations and the other for impedance sensing) is applied to the electrodes, and afterwards independently evaluated by a lock-in amplifier. With this new approach we were able to choose the appropriated amplitudes and frequencies for the different proposes (actuation and sensing). The measurements made were used to evaluate the real time droplet impedance enabling the knowledge of its position and velocity. This new approach opens new possibilities for impedance sensing and feedback control in DMF devices.
Resumo:
Urinary schistosomiasis remains a significant burden for Africa and the Middle East. The success of population-based control programs will depend on their impact, over many years, on Schistosoma haematobium reinfection and associated disease. In a multi-year (1984-1992) control program in Kenya, we examined risk for S. haematobium reinfection and late disease during and after annual school-based treatment. In this setting, long-term risk of new infection was independently associated with location, age, hematuria, and incomplete treatment, but not with sex or frequency of water contact. Thus, very local environmental features and age-related factors played an important role in S. haematobium transmission, such that population-based control programs should optimally tailor their efforts to local conditions on a village-by-village basis. In 2001-2002, the late benefits of earlier participation in school-based antischistosomal therapy were estimated in a cohort of formerly-treated adult residents compared to never-treated adults from the same villages. Among age-matched subjects, current infection prevalence was lower among those who had received remote therapy. In addition, prevalence of bladder abnormality was lower in the treated group, who were free of severe bladder disease. Treatment of affected adults resulted in rapid resolution of infection and any detectable bladder abnormalities. We conclude that continued treatment into adulthood, as well as efforts at long-term prevention of infection (transmission control) are necessary to achieve optimal morbidity control in affected communities.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
The objective of the this research project is to develop a novel force control scheme for the teleoperation of a hydraulically driven manipulator, and to implement an ideal transparent mapping between human and machine interaction, and machine and task environment interaction. This master‘s thesis provides a preparatory study for the present research project. The research is limited into a single degree of freedom hydraulic slider with 6-DOF Phantom haptic device. The key contribution of the thesis is to set up the experimental rig including electromechanical haptic device, hydraulic servo and 6-DOF force sensor. The slider is firstly tested as a position servo by using previously developed intelligent switching control algorithm. Subsequently the teleoperated system is set up and the preliminary experiments are carried out. In addition to development of the single DOF experimental set up, methods such as passivity control in teleoperation are reviewed. The thesis also contains review of modeling of the servo slider in particular reference to the servo valve. Markov Chain Monte Carlo method is utilized in developing the robustness of the model in presence of noise.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.
Resumo:
Many approaches to force control have assumed the ability to command torques accurately. Concurrently, much research has been devoted to developing accurate torque actuation schemes. Often, torque sensors have been utilized to close a feedback loop around output torque. In this paper, the torque control of a brushless motor is investigated through: the design, construction, and utilization of a joint torque sensor for feedback control; and the development and implementation of techniques for phase current based feedforeward torque control. It is concluded that simply closing a torque loop is no longer necessarily the best alternative since reasonably accurate current based torque control is achievable.
Resumo:
Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.