863 resultados para Olive fruit-fly
Resumo:
A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.
Resumo:
The effect of fruit ripeness on the antioxidant content of 'Hojiblanca' virgin olive oils was studied. Seasonal changes were monitored at bi-weekly intervals for three consecutive crop years. Phenolic content, tocopherol composition, bitterness index, carotenoid and chlorophyllic pigments and oxidative stability were analysed. In general, the antioxidants and the related parameters decreased as olive fruit ripened. The phenolics and bitterness, closely related parameters, did not present significant differences among years. Although in general, the tocopherols decreased during olive ripening gamma-tocopherol increased. Differences between crop years were found only for total tocopherols and alpha-tocopherol, which showed higher content in low rainfall year oils. The pigment content decreased during ripening, chlorophyll changing faster. For low rainfall years, the level of pigments was higher, reaching significant differences between yields. Significant differences among years were found for oil oxidative stability; higher values were obtained for drought years. A highly significant prediction model for oxidative stability has been obtained. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.
Resumo:
Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.
Resumo:
International market access for fresh commodities is regulated by international accepted phytosanitary guidelines, the objectives of which are to reduce the biosecurity risk of plant pest and disease movement. Papua New Guinea (PNG) has identified banana as a potential export crop and to help meet international market access requirements, this thesis provides information for the development of a pest risk analysis (PRA) for PNG banana fruit. The PRA is a three step process which first identifies the pests associated with a particular commodity or pathway, then assesses the risk associated with those pests, and finally identifies risk management options for those pests if required. As the first step of the PRA process, I collated a definitive list on the organisms associated with the banana plant in PNG using formal literature, structured interviews with local experts, grey literature and unpublished file material held in PNG field research stations. I identified 112 organisms (invertebrates, vertebrate, pathogens and weeds) associated with banana in PNG, but only 14 of these were reported as commonly requiring management. For these 14 I present detailed information summaries on their known biology and pest impact. A major finding of the review was that of the 14 identified key pests, some research information occurs for 13. The single exception for which information was found to be lacking was Bactrocera musae (Tryon), the banana fly. The lack of information for this widely reported ‘major pest on PNG bananas’ would hinder the development of a PNG banana fruit PRA. For this reason the remainder of the thesis focused on this organism, particularly with respect to generation of information required by the PRA process. Utilising an existing, but previously unanalysed fruit fly trapping database for PNG, I carried out a Geographic Information System analysis of the distribution and abundance of banana in four major regions of PNG. This information is required for a PRA to determine if banana fruit grown in different parts of the country are at different risks from the fly. Results showed that the fly was widespread in all cropping regions and that temperature and rainfall were not significantly correlated with banana fly abundance. Abundance of the fly was significantly correlated (albeit weakly) with host availability. The same analysis was done with four other PNG pest fruit flies and their responses to the environmental factors differed to banana fly and each other. This implies that subsequent PRA analyses for other PNG fresh commodities will need to investigate the risk of each of these flies independently. To quantify the damage to banana fruit caused by banana fly in PNG, local surveys and one national survey of banana fruit infestation were carried out. Contrary to expectations, infestation was found to be very low, particularly in the widely grown commercial cultivar, Cavendish. Infestation of Cavendish fingers was only 0.41% in a structured, national survey of over 2 700 banana fingers. Follow up laboratory studies showed that fingers of Cavendish, and another commercial variety Lady-finger, are very poor hosts for B. musae, with very low host selection rates by female flies and very poor immature survival. An analysis of a recent (within last decade) incursion of B. musae into the Gazelle Peninsula of East New Britain Province, PNG, provided the final set of B. musae data. Surveys of the fly on the peninsular showed that establishment and spread of the fly in the novel environment was very rapid and thus the fly should be regarded as being of high biosecurity concern, at least in tropical areas. Supporting the earlier impact studies, however, banana fly has not become a significant banana fruit problem on the Gazelle, despite bananas being the primary starch staple of the region. The results of the research chapters are combined in the final Discussion in the form of a B. musae focused PRA for PNG banana fruit. Putting the thesis in a broader context, the Discussion also deals with the apparent discrepancy between high local abundance of banana fly and very low infestation rates. This discussion focuses on host utilisation patterns of specialist herbivores and suggests that local pest abundance, as determined by trapping or monitoring, need not be good surrogate for crop damage, despite this linkage being implicit in a number of international phytosanitary protocols.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is a polyphagous pest, and many citrus types are included among its hosts. While quantification of citrus host use by B. tryoni is lacking, citrus is generally considered a ‘low pressure’ crop. This paper investigates B. tryoni female oviposition preference and offspring performance in five citrus types; Murcott mandarin (Citrus reticulata), Navel orange and Valencia orange (Citrus sinensis), Eureka lemon (Citrus limon) and yellow grapefruit (Citrus paradisi). Oviposition preference was investigated in laboratory-based choice and no-choice experiments, while immature survival and offspring performance were investigated by infesting fruits in the laboratory and evaluating pupal recovery, pupal emergence and F1 fecundity. Fruit size, Brix level and peel toughness were also measured for correlation with host use. Bactrocera tryoni demonstrated an oviposition preference hierarchy among the citrus fruits tested; Murcott and grapefruit were most preferred for oviposition and lemon the least, while preference for Navel and Valencia was intermediate. Peel toughness was negatively correlated with B. tryoni oviposition preference, while no significant correlations were detected between oviposition and Brix level or fruit size. Immature survival in the tested fruit was very low. Murcott was the best host (21% pupal recovery), while all other citrus types that showed pupal recovery of 6% or lower and no pupae were recovered from Valencia orange. In pupae recovered from Navel orange and lemon, adult eclosion was greatly reduced, while in grapefruit and lemon, no eggs were recovered from F1 adults. Based on these laboratory results, many commercial citrus varieties appear to be poor hosts for B. tryoni and may pose a low post-harvest and quarantine risk. These findings need to be confirmed in the field, as they impact on both pre-harvest and post-harvest countermeasures.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.
Resumo:
Diachasmimorpha kraussii is a polyphagous endoparasitoid of dacine fruit flies. The fruit fly hosts of D. krausii, in turn, attack a wide range of fruits and vegetables. The role that fruits play in host selection behaviour of D. kraussii has not been previously investigated. This study examines fruit preference of D. kraussii through a laboratory choice-test trial and field fruit sampling. In the laboratory trial, oviposition preference and offspring performance measures (sex ratio, developmental time, body length, hind tibial length) of D. kraussii were investigated with respect to five fruit species [Psidium guajava L. (guava), Prunis persica L. (peach), Malus domestica Borkh. (apple), Pyrus communis L. (pear) and Citrus sinensis L. (orange)], and two fruit fly species (Bactrocera jarvisi and B. tryoni). Diachasmimorpha kraussii responded to infested fruit of all fruit types in both choice and no-choice tests, but showed stronger preference for guava and peach in the choice tests irrespective of the species of fly larvae within the fruit. The wasp did not respond to uninfested fruit. The offspring performance measures differed in a non-consistent fashion between the fruit types, but generally wasp offspring performed better in guava, peach and orange. The offspring sex ratio, except for one fruit/fly combination (B. jarvisi in apple), was always female biased. The combined results suggest that of the five fruits tested, guava and peach are the best fruit substrates for D. krausii. Field sampling indicated a non-random use of available, fruit fly infested fruit by D. kraussii. Fruit fly maggots within two fruit species, Plachonia careya and Terminalia catappa, had disproportionately higher levels of D. krausii parasitism than would be expected based on the proportion of different infested fruit species sampled, or levels of fruit fly infestation within those fruit.
Resumo:
Understanding the host range for all of the fruit fly species within the South Pacific region is vital to establishing trade and quarantine protocols. This is important for the countries within the region and their trade partners. A significant aspect of the Australian Centre for International Agricultural Research (ACIAR) and Regional Fruit Fly Projects (RFFP) has been host fruit collecting which has provided information on fruit fly host records in the seven participating countries. This work is still continuing in all project countries at different intensities. In the Cook Islands, Fiji, Tonga and Western Samoa, fruit surveys have assumed a quarantine surveillance role, with a focus on high risk fruits, such as guava, mango, citrus, bananas, cucurbits and solanaceous fruits. In the Solomon Islands, Vanuatu and the Federated States of Micronesia (FSM), fruit surveys are still at the stage where host ranges are far from complete. By the end of the current project a more complete picture of the fruit fly hosts in these countries will have been gained. A brief summary of the data collected to date is as follows: 23 947 fruit samples collected to date; 2181 positive host fruit records; 31 fruit fly species reared from fruit; 12 species reared from commercial fruit. A commercial fruit is classed as an edible fruit with potential for trade at either a local or international level. This allows for the inclusion of endemic fruit species that have cultural significance as a food source. On the basis of these results, there are fruit fly species of major economic importance in the South Pacific region. However, considerably more fruit survey work is required in order to establish a detailed understanding of all the pest species.
Resumo:
This book provides for the first time a detailed host list for all the fruit fly species (Tephritidae) known from Australia. It includes available distribution, male lure and host plant information for the 278 species currently recorded from Australia (including Torres Strait Islands but excluding Christmas and Cocos (Keeling) islands in the Indian Ocean). This total includes 269 described species plus nine undescribed species of Tephritinae. Thirteen fruit fly specialists from throughout Australia collaborated with QDPI in the production of this book. It provides an invaluable reference source for anyone involved in fruit fly research, ecological studies, pre- and post-harvest control, regulation, quarantine and market access.
Resumo:
This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.
Resumo:
Laboratory colonies of 15 economically important species of multi-host fruit flies (Diptera:Tephritidae) have been established in eight South Pacific island countries for the purpose of undertaking biological studies, particularly host status testing and research on quarantine treatments. Laboratory rearing techniques are based on the development of artificial diets for larvae consisting predominately of the pulp of locally available fruits including pawpaw, breadfruit and banana. The pawpaw diet is the standard diet and is used in seven countries for rearing 11 species. Diet ingredients are standard proportions of fruit pulp, hydrolysed protein and a bacterial and fungal inhibitor. The diet is particularly suitable for post-harvest treatment studies when larvae of known age are required. Another major development in the laboratory rearing system is the use of pure strains of Enterobacteriaceae bacterial cultures as important adult-feeding supplements. These bacterial cultures are dissected out of the crop of wild females, isolated by sub-culturing, and identified before supply to adults on peptone yeast extract agar plates. Most species are egged using thin, plastic receptacles perforated with 1 mm oviposition holes, with fruit juice or larval diet smeared internally as an oviposition stimulant. Laboratory rearing techniques have been standardised for all of the Pacific countries. Quality control monitoring is based on acceptable ranges in per cent egg hatch, pupal weight and pupal mortality. Colonies are rejuvenated every 6 to 12 months by crossing wild males with laboratory-reared females and vice versa. The standard rearing techniques, equipment and ingredients used in collecting, establishment, maintenance and quality control of these fruit fly species are detailed in this paper.
Resumo:
Male fruit fly attractants, cue-lure and methyl eugenol (ME), have been successfully used for the last 50 years in the monitoring and control of Dacini fruit flies (Bactrocera and Dacus species). However, over 50% of Dacini are non-responsive to either lure, including some pest species. A new lure, zingerone, has been found to weakly attract cue- and ME-responsive species in Malaysia. In Australia it attracted a weakly cue-responsive minor pest Bactrocera jarvisi (Tryon) and three non-responsive' species. Similar compounds were tested in Queensland and attracted cue- and ME-responsive species and two non-responsive' species. In this study, 14 novel compounds, including raspberry ketone formate (RKF) (Melolure) and zingerone, were field tested in comparison with cue-lure and ME at 17 sites in north Queensland. The most attractive novel lures were isoeugenol, methyl-isoeugenol, dihydroeugenol and zingerone. Several non-responsive' species responded to the new lures: Bactrocera halfordiae (Tryon), a species of some market access concern, was most attracted to isoeugenol; B.barringtoniae (Tryon), B.bidentata (May) and B.murrayi (Perkins) responded to isoeugenol, methyl-isoeugenol and dihydroeugenol; two new species of Dacus responded to zingerone. Bactrocera kraussi (Hardy), a cue-responsive minor pest in north Queensland, was significantly more attracted to isoeugenol than cue-lure. The cue-responsive D.absonifacies (May) and D.secamoneaeDrew were significantly more attracted to zingerone than cue-lure. Bactrocera yorkensisDrew & Hancock, a ME-responsive species was significantly more attracted to isoeugenol, methyl-isoeugenol and dihydroeugenol than ME. The preferential response to RKF or cue-lure was species specific. Six species were significantly more attracted to RKF, including the pests B.tryoni (Froggatt), B.frauenfeldi (Schiner) and minor pest B.bryoniae (Tryon); eight species were significantly more attracted to cue-lure including the pest B.neohumeralis (Hardy). These findings have significance in the search for optimal male lures for pest species elsewhere in the world.
Resumo:
Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.