975 resultados para Ocular Physiological Phenomena


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tear component deposition onto contact lenses is termed `spoilation' and occurs due to the interaction of synthetic polymers with their biological fluid environment. Spoilation phenomena alter the physico-chemical properties of hydrophilic contact lenses, diminishing the optical properties of the lens; causing discomfort and complications for the wearer. Eventually these alterations render the lens unwearable. The primary aim of this interdisciplinary study was to develop analytical techniques capable of analysing the minute quantities of biological deposition involved, in particular the lipid fraction. Prior to this work such techniques were unavailable for single contact lenses. It is envisaged that these investigations will further the understanding of this biological interfacial conversion. Two main analytical techniques were developed: a high performance liquid chromatography (HPLC) technique and fluorescence spectrofluorimetry. The HPLC method allows analysis of a single contact lens and provided previously unavailable valuable information about variations in the lipid profiles of deposited contact lenses and patient tear films. Fluorescence spectrophotofluorimetry is a sensitive non-destructive technique for observing changes in the fluorescence intensity of biological components on contact lenses. The progression and deposition of tear materials can be monitored and assessed for both in vivo and in vitro spoiled lenses using this technique. An improved in vitro model which is comparable to tears and chemically mimics ocular spoilation was also developed. This model allows the controlled study of extrinsic factors and hydrogel compositions. These studies show that unsaturated tear lipids, probably unsaturated fatty acids, are involved in the interfacial conversion of hydrogel lenses, rendering them incompatible with the ocular microenvironment. Lipid interaction with the lens surface then facilitates secondary deposition of other tear components. Interaction, exchange and immobilisation (by polymerisation) of the lipid layer appears to occur before the final and rapid growth of more complex, insoluble discrete deposits, sometimes called `white spots'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis investigates the ocular response to silicone-hydrogel (SiH) contact lens wear, a relatively new contact lens material that has a higher modulus of rigidity and different surface coating than used in conventional hydrogel materials. The properties of SiH materials differ significantly from conventional hydrogels and, using subjective and objective means of assessment, the thesis examines how these properties affect reflection and biometry, ocular physiology, tear film characteristics, symptomatology, adverse events and complications. A range of standard and newly designed investigative techniques were employed, and latter involving novel imaging techniques, for the objective assessment of physiological changes which occur with contact lens wear. The study is the first to combine these techniques with biochemical analyses of the tear film composition. Forty-seven subjects were fitted with SiH lenses and randomly allocated to one of the two materials currently on the market (Lotrafilcon A or Balafilcon A) on an either daily or continuous wear basis. An additional control group of 14 age-matched non-contact lens wearers were monitored over the same period. Measurements were taken before and 1, 3, 6, 12 and 18 months after initial fitting. The findings reported in this thesis will enable contact lens practitioners and manufacturers to understand further the optical, physiological and biochemical nature of the ocular response to SiH contact lenses and hence facilitate the development of this important generation of contact lens material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding issue of th is thesis was the examination of workload, induced by relinotopic and spatiotopic stimuli, on both the ocu lomotor and cardiovascular systems together with investigating the covariation between the two systems - the 'eye-heart' link. Further, the influence of refractive error on ocular accommodation and cardiovascular function was assessed. A clinical evaluation was undertaken to assess the newly available open-view infrared Shin-Nippon NVision-K 5001 optometer, its benefit being the capability to measure through pupils = 2.3 mm. Measurements of refractive error taken with the NVision-K were found to be both accurate (Difference in Mean Spherical Equivalent: 0.14 ± 0.35 D; p = 0.67) and repeatable when compared to non-cycloplegic subjective refraction. Due to technical difficulties, however, the NVision-K could not be used for the purpose of the thesis, as such, measures of accommodation were taken using the continuously recording Shin-Nippon SRW-5000 openview infrared optometer, coupled with a piezo-electric finger pulse transducer to measure pulse. Heart rate variability (HRV) was spectrally analysed to determine the systemic sympathetic and parasympathetic components of the autonomic nervous system (ANS). A large sample (n = 60), cross-sectional study showed late-onset myopes (LOMs) display less accurate responses when compared to other refractive groups at high accommodative demand levels (3 .0 0 and 4.0D). Tonic accommodation (TA) was highest in the hypermetropes, fo llowed by emmetropes and early-onset myopes while the LOM subjects demonstrated statistically significant lower levels of TA. The root-meansquare (RMS) value of the accommodative response was shown to amplify with increased levels of accommodative demand. Changes in refractive error only became significant between groups at higher demand levels (3.0 D and 4.0 D) with the LOMs showing the largest magnification in oscilIations. Examination of the stimulus-response cross-over point with the unit ratio line and TA showed a correlation between the two (r = 0.45, p = 0.001), where TA is approximately twice the dioptric value of the stimulus-response cross-over point. Investigation of the relationship between ocular accommodation and systemic ANS function demonstrated covariation between the systems. Subjects with a faster heart rate (lower heart period) tended to have a higher TA value (r = -0.27, p < 0.05). Further, an increase in accommodative demand accompanies a faster heart rate. The influence of refractive error on the cardiovascular response to changes in accommodative demand, however, was equivocal. Examination of the microfluctuations ofacconunodation demonstrated a correlation between the temporal frequency location of the accommodative high Frequency component (HFC) and the arterial pulse frequency. The correlation was present at a range of accommodative demands from 0.0 D to 4.0 D and in all four refractive groups, suggesting that the HFC was augmented by physiological factors. Examination of the effect of visual cognition on ocular accommodation and the ANS confirmed that increasing levels of cognition affect the accommodative mechanism. The accommodative response shifted away from the subject at both near and far. This shift in accommodative response accompanied a decay in the systemic parasympathetic innervation to the heart. Differences between refractive groups also existed with LOMs showing less accurate responses compared to emmetropes. This disparity, however, appeared to be augmented by the systemic sympathetic nervous system. The investigations discussed explored Ihe role of oculomotor and cardiovascular fu nction in workload enviromnents, providing evidence for a behavioural link between the cardiovascular and oculomotor systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - Anterior segment optical coherent tomography (AS-OCT) is used to further examine previous reports that ciliary muscle thickness (CMT) is increased in myopic eyes. With reference to temporal and nasal CMT, interrelationships between biometric and morphological characteristics of anterior and posterior segments are analysed for British-White and British-South-Asian adults with and without myopia. Methods - Data are presented for the right eyes of 62 subjects (British-White n = 39, British-South-Asian n = 23, aged 18–40 years) with a range of refractive error (mean spherical error (MSE (D)) -1.74 ± 3.26; range -10.06 to +4.38) and separated into myopes (MSE (D) <-0.50, range -10.06 to -0.56; n = 30) and non-myopes (MSE (D) =-0.50, -0.50 to +4.38; n = 32). Temporal and nasal ciliary muscle cross-sections were imaged using a Visante AS-OCT. Using Visante software, manual measures of nasal and temporal CMT (NCMT and TCMT respectively) were taken in successive posterior 1 mm steps from the scleral spur over a 3 mm distance (designated NCMT1, TCMT1 et seq). Measures of axial length and anterior chamber depth were taken with an IOLMaster biometer. MSE and corneal curvature (CC) measurements were taken with a Shin-Nippon auto-refractor. Magnetic resonance imaging was used to determine total ocular volume (OV) for 31 of the original subject group. Statistical comparisons and analyses were made using mixed repeated measures anovas, Pearson's correlation coefficient and stepwise forward multiple linear regression. Results - MSE was significantly associated with CMT, with thicker CMT2 and CMT3 being found in the myopic eyes (p = 0.002). In non-myopic eyes TCMT1, TCMT2, NCMT1 and NCMT2 correlated significantly with MSE, AL and OV (p < 0.05). In contrast, myopic eyes failed generally to exhibit a significant correlation between CMT, MSE and axial length but notably retained a significant correlation between OV, TCMT2, TCMT3, NCMT2 and NCMT3 (p < 0.05). OV was found to be a significantly better predictor of TCMT2 and TCMT3 than AL by approximately a factor of two (p < 0.001). Anterior chamber depth was significantly associated with both temporal and nasal CMT2 and CMT3; TCMT1 correlated positively with CC. Ethnicity had no significant effect on differences in CMT. Conclusions - Increased CMT is associated with myopia. We speculate that the lack of correlation in myopic subjects between CMT and axial length, but not between CMT and OV, is evidence that disrupted feedback between the fovea and ciliary apparatus occurs in myopia development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease and stroke continue to be the chief causes of death in developed countries and one of the leading causes of visual impairment. The individual with systemic hypertension may remain asymptomatic for many years. Systemic mortality and morbidity are markedly higher for hypertensives than normotensives, but can be significantly reduced by early diagnosis and then efficient management. However, the ability of Optometrists to detect and appropriately refer systemic hypertensives remains generally poor. This review examines the disease, its effects and detection by observation of the retinal signs, particularly those considered to be pre-malignant. Previous methods of classifying retinal hypertensive signs are discussed along with more recent image analysis techniques. The role of the optometrist in detecting, monitoring and appropriate referral of systemic hypertensives is discussed in relation to current research. (C) 2001 The College of Optometrists. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To explore the repeatability of lower-order and higher-order ocular aberrations measured in patients with keratoconus. Methods: The IRX-3 (Imagine Eyes, Paris, France) aberrometer was used to record lower-order and higher-order aberrations in 31 eyes of 31 patients with keratoconus. Four monocular measurements were taken consecutively for each patient. The aberrometry data were analysed up to the 5th Zernike order for a 4-mm pupil diameter. The data were evaluated using repeated-measures anova and Friedman analyses. Repeatability was analysed using within-subject standard deviation (SW) and the repeatability limit (r) calculated as 1.96 ×√2×Sw. Results: Of the 11 aberration terms evaluated, the repeatability of Z (2,0) (mean= 1.36μm; SW=0.09μm; r=0.26μm); Z (2,±2) RMS (mean=1.05μm; SW= 0.09μm; r=0.24μm) and Z (4,0) aberrations (mean=0.34μm; SW=0.09 μm; r=0.24μm) showed the highest variability. In contrast, Z (3,±1) RMS aberrations (mean=0.85μm; SW=0.06μm; r=0.16μm) and Z (4,±2) RMS aberrations (mean=0.40μm; SW=0.07μm; r=0.18μm) showed comparatively better repeatability. Conclusions: The lower-order and higher-order aberrations measured in this group of keratoconic patients showed higher levels of variability compared to previous investigations of visually-normal subjects. These results may be of interest to eyecare practitioners involved in the design and fitting of aberration-controlling contact lenses for patients with keratoconus. © 2011 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To shed light on the potential efficacy of cycling as a testing modality in the treatment of intermittent claudication (IC), this study compared physiological and symptomatic responses to graded walking and cycling tests in claudicants. Sixteen subjects with peripheral arterial disease (resting ankle: brachial index (ABI) < 0.9) and IC completed a maximal graded treadmill walking (T) and cycle (C) test after three familiarization tests on each mode. During each test, symptoms, oxygen uptake (VO2), minute ventilation (VE), respiratory exchange ratio (RER) and heart rate (HR) were measured, and for 10 min after each test the brachial and ankle systolic pressures were recorded. All but one subject experienced calf pain as the primary limiting symptom during T; whereas the symptoms were more varied during C and included thigh pain, calf pain and dyspnoea. Although maximal exercise time was significantly longer on C than T (690 +/- 67 vs. 495 +/- 57 s), peak VO2, peak VE and peak heart rate during C and T were not different; whereas peak RER was higher during C. These responses during C and T were also positively correlated (P < 0.05) with each other, with the exception of RER. The postexercise systolic pressures were also not different between C and T. However, the peak decline in ankle pressures from resting values after C and T were not correlated with each other. These data demonstrate that cycling and walking induce a similar level of metabolic and cardiovascular strain, but that the primary limiting symptoms and haemodynamic response in an individual's extremity, measured after exercise, can differ substantially between these two modes.