978 resultados para Octagonal patch antenna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work has as main objective to study the application of microstrip antennas with patch and use of superconducting arrays of planar and linear phase. Was presented a study of the main theories that explain clearly the superconductivity. The BCS theory, Equations of London and the Two Fluid Model are theories that supported the implementation of the superconducting microstrip antennas. Arrangements phase was analyzed in linear and planar configuration of its antennas are reported factors such arrays to settings and criteria of phase and the spacing between the elements that make the arrayst was reviewed in order to minimize losses due to secondary lobes. The antenna used has a rectangular patch Sn5InCa2Ba4Cu10Oy the superconducting material was analyzed by the method of Transverse Transmission Line (TTL) applied in the field of Fourier transform (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of cross-cutting components of the structure. The inclusion of superconducting patch is made using the boundary condition, complex resistive. Are obtained when the resonant frequency depending on the parameters of the antenna, radiation pattern of E-Plan and H-Plan for the M-phase arrangements of antennas in the linear and planar configurations for different values of phase and spacing between the elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an analysis of the annular ring microstrip antennas printed on uniaxial anisotropic substrates and with superstrate.The analysis uses the full-wave formulation by means of the Hertz vector potentials method, in the Hankel transform domain. The definition of the Hertz vector potentials and the application of the appropriate boundary conditions to the structure allow determining the dyadic Green functions, relating the current densities in the conducting patch to the transforms of the tangential electric field components. Galerkin s method is then used to obtain the matrix equation whose nontrivial solution gives the complex resonant frequency of the antenna. From the modeling, it is possible to obtain results for the resonant frequency, bandwidth and quality factor, as a function of several parameters of the antenna, for different configurations. We have considered annular ring microstrip antennas on a single dielectric layer, antennas with two anisotropic dielectric layers, and annular ring microstrip antennas on suspended substrates. Numerical results for the resonant frequency of the these structures printed on isotropic substrates are also presented and compared with those published by other authors, showing a good agreement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages of antennas that can resemble the shape of the body to which they are attached are obvious. However, electromagnetic modeling of such unusually shaped antennas can be difficult. In this paper, the commercially available software SolidWorks(TM) is used for accurately drawing complex shapes in conjunction with the electromagnetic software FEKO(TM) to model the EM behavior of conformal antennas. The application of SolidWorks and custom-written software allows all the required information that forms the analyzed structure to be automatically inserted into FEKO, and gives the user complete control over the antenna being modeled. This approach is illustrated by a number of simulation examples of single, wideband, multi-band planar and curved patch antennas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter describes a new idea of increasing operational bandwidth of a compact planar inverted F antenna (PIFA) by introducing open-end slots in the ground plane under the radiating patch. The slots are not in the way of active modules of a wireless transceiver and thus the proposed antenna size reduction method is attractive from the point of view of practical implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of dual-band 2.45/5.2 GHz antenna for an acces point of a Wireless Local Area Network (LAN) is presented. The proposed antenna is formed by a Radial Line Slot Array (RLSA) operating at 2.4 GHz and a Microstrip patch working at 5.2 GHz, both featuring circular polarization. The design of this antenna system is accomplished using commercially available Finite Element software. High Frequency Structure Simulator (HFSS) of Ansoft and an in-house developed iteration procedure. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two frequency bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a dual-band 2.45/5.2 GHz antenna for an access point of a wireless local area network (WLAN) is presented. The proposed antenna is formed by an assembly of a radial line slot array (RLSA) operating at 2.4 GHz and a microstrip patch working at 5.2 GHz. The design of this antenna system is accomplished using commercially available finite element software, high frequency structure simulator (HFSS), of Ansoft. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two investigated frequency bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of a reconfigurable patch filter based on a triple-mode circular patch resonator with four radial slots. The analysis has been carried out thanks to the development of a new theoretical approach of the tunable patch filter based on the coupling matrix. The coefficients of the coupling matrix related to the tunable behavior have been identified and some rules for their evolution have been derived. For a proof-of-concept, a bandpass filter has been designed with a continuous tunability obtained with varactors connected across the slots. State-of-the-art results have been obtained, with a frequency tuning range of 27% from 1.95 to 2.43 GHz and a change in fractional bandwidth from 8.5% to 31.5% for the respective frequencies. In the entire tuning range, the return loss is better than 10 dB and the maximum insertion loss is 2 dB. Due to the newly developed coupling matrix, measurements, simulations, and theory showed great agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a triple-mode bandpass filter using a modified circular patch resonator. Etched slots in the resonator split the TM(1, 1, 0)(z) degenerate fundamental modes and also perturb the TM(2, 1, 0)(z) mode, approximating their resonant frequencies to form a third-order bandpass filter. A 2.42 GHz centered filter was designed and fabricated. Experimental results showed a fractional bandwidth of 29%, return loss better than 16 dB, insertion loss of 0.5 dB, and good second harmonic band rejection. The filter exhibited a size reduction of 51% compared with a filter using an unperturbed circular patch resonator at the same frequency. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 178-182, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23950