937 resultados para OVINE LEFT-VENTRICLE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
BACKGROUND: Because of their similar visual appearance, differentiation of left ventricular thrombotic material and myocardial wall can be difficult in contrast-enhanced coronary computed tomography (CT) angiography. OBJECTIVE: We identified typical thrombi attenuation of left ventricular thrombi with the use of CT measurement. METHODS: Over a time period of 6 years; we retrospectively identified 31 patients who showed a left ventricular thrombus in CT angiography datasets. Patients underwent routine contrast cardiac CT to investigate coronary artery disease. CT attenuation of each thrombus was assessed in the 4-chamber view. CT densities were also determined in the ascending aorta, left ventricle, and myocardial wall both in the mid-septal and mid-lateral segments. The mean CT attenuation of thrombi and the difference between attenuation in thrombi, left ventricular cavity, and myocardial wall were determined. The ratio of attenuation values in thrombus versus aorta and myocardium versus aorta were also determined. RESULTS: Mean (+/- SD) CT attenuation of all left ventricular thrombi in 31 patients was 43.2 +/- 15.3 HU (range, 25-80 HU). Mean CT densities of septal and lateral myocardial wall were 102.9 +/- 23.1 HU (range, 63-155 HU) and 99.3 +/- 28.7 HU (range, 72-191 HU), respectively, and were thus significantly higher than the CT attenuation of thrombi (P < 0.001). A threshold of 65 HU yielded a sensitivity, specificity, and positive and negative predictive values of 94%, 97%, 94%, and 97%, respectively, to differentiate thrombus from the myocardial wall. The mean ratio between CT attenuation of thrombus and CT attenuation within the ascending aorta was 0.11 +/- 0.05 (range, 0.04-0.23), which was significantly lower compared with the mean ratio between CT attenuation of the myocardial wall and the CT attenuation within the ascending aorta. CONCLUSION: CT attenuation within left ventricular thrombi was significantly lower than myocardial attenuation in CT angiography datasets. Assessment of CT attenuation may contribute to the differentiation of thrombi. (C) 2012 Society of Cardiovascular Computed Tomography. All rights reserved.
Resumo:
Introduction: The most common indication for surgical correction of giant left atrium is associated with mitral valve insufficiency with or without atrial fibrillation. Several techniques for this purpose are already described with varying results. Objective: To present the initial experience with the tangential triangular resection technique (Pomerantzeff). Methods: From 2002 to 2010, four patients underwent mitral valve operation with reduction of left atrial volume by the technique of triangular resection tangential in our service. Three patients were female. The age ranged from 21 to 51 years old. The four patients presented with atrial fibrillation. Ejection fraction of left ventricle preoperatively ranged from 38% to 62%. The left atrial diameter ranged from 78mm to 140mm. After treatment of mitral dysfunction, the left atrium was reduced by resecting triangular tangential posterior wall between the pulmonary veins to avoid anatomic distortion of the mitral valve or pulmonary veins, reducing tension in the suture line. Results: Average hospital stay was 21.5 +/- 6.5 days. The mean cardiopulmonary bypass time was 130 +/- 30 minutes. There was no surgical bleeding or mortality in the postoperative period. All patients had sinus rhythm restored in the output of cardiopulmonary bypass, maintaining this rate postoperatively. The average diameter of the left atrium was reduced by 50.5% +/- 19.5%. The left ventricular ejection fraction improved in all patients. Conclusion: Initial results with this technique have shown effective reduction of the left atrium.
Resumo:
Although infective endocarditis (IE) has been described in reports dating from the Renaissance, the diagnosis still challenges and the outcome often surprises. In the course of time, diagnostic criteria have been updated and validated to reduce misdiagnosis. Some risk factors and epidemiology have shown dynamic changes since degenerative valvular disease became more predominant in developed countries, and the mean age of the affected population increased. Despite streptococci have been being well known as etiologic agents, some groups, although rare, have been increasingly reported (e.g., Streptococcus milleri.) Intracardiac complications of IE are common and have a worse prognosis, frequently requiring surgical treatment. We report a case of a middle-aged diabetic man who presented with prolonged fever, weight loss, and ultimately severe dyspnea. IE was diagnosed based on a new valvular regurgitation murmur, a positive blood culture for Streptococcus anginosus, an echocardiographic finding of an aortic valve vegetation, fever, and pulmonary thromboembolism. Despite an appropriate antibiotic regimen, the patient died. Autopsy findings showed vegetation attached to a bicuspid aortic valve with an associated septal abscess and left ventricle and aortic root fistula connecting with the pulmonary artery. A large thrombus was adherent to the pulmonary artery trunk and a pulmonary septic thromboemboli were also identified.
Resumo:
ABSTRACT: Horse kicks are rare incidents-especially, if they end in fatality. In this case, a 13-year-old girl collapsed 3 minutes after sustaining a kick to the chest from a pony. Resuscitation attempts were unsuccessful. Postmortem computed tomography and magnetic resonance imaging were performed before autopsy.Imaging revealed a 3-cm long laceration of the left ventricle and a large pericardial effusion. Using segmentation techniques, the amount of blood inside the pericardium was determined. These findings correlated well with the autopsy findings. Pericardial tamponade was determined at autopsy to be the cause of death.Postmortem imaging may prove useful for the diagnosis of these types of injury, but further studies are needed to document accuracy.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems (MCS) have led to additional strategies in the treatment of end stage heart failure (HF). Heart transplantation (HTx) can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVAD). Mechanical support of the failing left ventricle enables appropriate hemodynamic stabilisation and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group 0 or B, with a body weight over 90 kg and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent peri-operative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of a LVAD represents a surgical challenge. This review summarises the current knowledge about LVAD and continuous flow devices especially since the latter have been increasingly used worldwide in the most recent years. The review is also based on the institutional experience at Berne University Hospital between 2000 and 2012. Apart from short-term devices (Impella, Cardiac Assist, Deltastream and ECMO) which were used in approximately 150 cases, 85 pulsatile long-term LVAD, RVAD or bi-VAD and 44 non-pulsatile LVAD (mainly HeartMateII and HeartWare) were implanted. After an initial learning curve, one-year mortality dropped to 10.4% in the last 58 patients.
Resumo:
Previous reports prove the safety and efficacy of cardiac pacing employing a guidewire in the left ventricle as unipolar pacing electrode. We describe the use of left ventricular guidewire pacing as an alternative to conventional transvenous temporary right ventricular pacing in the context of transcatheter aortic valve implantation. © 2012 Wiley Periodicals, Inc.
Resumo:
Persistent left superior vena cava (LSVC) is a relatively frequent finding in congenital cardiac malformation. The scope of the study was to analyze the timing of diagnosis of persistent LSVC, the timing of diagnosis of associated anomalies of the coronary sinus, and the global impact on morbidity and mortality of persistent LSVC in children with congenital heart disease after cardiac surgery. Retrospective analysis of a cohort of children after cardiac surgery on bypass for congenital heart disease. Three hundred seventy-one patients were included in the study, and their median age was 2.75 years (IQR 0.65-6.63). Forty-seven children had persistent LSVC (12.7 %), and persistent LSVC was identified on echocardiography before surgery in 39 patients (83 %). In three patients (6.4 %) with persistent LSVC, significant inflow obstruction of the left ventricle developed after surgery leading to low output syndrome or secondary pulmonary hypertension. In eight patients (17 %), persistent LSVC was associated with a partially or completely unroofed coronary sinus and in two cases (4 %) with coronary sinus ostial atresia. Duration of mechanical ventilation was significantly shorter in the control group (1.2 vs. 3.0 days, p = 0.04), whereas length of stay in intensive care did not differ. Mortality was also significantly lower in the control group (2.5 vs. 10.6 %, p = 0.004). The results of study show that persistent LSVC in association with congenital cardiac malformation increases the risk of mortality in children with cardiac surgery on cardiopulmonary bypass. Recognition of a persistent LSVC and its associated anomalies is mandatory to avoid complications during or after cardiac surgery.
Resumo:
BACKGROUND: Transient left ventricular apical ballooning syndrome (TLVABS) is an acute cardiac syndrome mimicking ST-segment elevation myocardial infarction characterized by transient wall-motion abnormalities involving apical and mid-portions of the left ventricle in the absence of significant obstructive coronary disease. METHODS: Searching the MEDLINE database 28 case series met the eligibility criteria and were summarized in a narrative synthesis of the demographic characteristics, clinical features and pathophysiological mechanisms. RESULTS: TLVABS is observed in 0.7-2.5% of patients with suspected ACS, affects women in 90.7% (95% CI: 88.2-93.2%) with a mean age ranging from 62 to 76 years and most commonly presents with chest pain (83.4%, 95% CI: 80.0-86.7%) and dyspnea (20.4%, 95% CI: 16.3-24.5%) following an emotionally or physically stressful event. ECG on admission shows ST-segment elevations in 71.1% (95% CI: 67.2-75.1%) and is accompanied by usually mild elevations of Troponins in 85.0% (95% CI: 80.8-89.1%). Despite dramatic clinical presentation and substantial risk of heart failure, cardiogenic shock and arrhythmias, LVEF improved from 20-49.9% to 59-76% within a mean time of 7-37 days with an in-hospital mortality rate of 1.7% (95% CI: 0.5-2.8%), complete recovery in 95.9% (95% CI: 93.8-98.1%) and rare recurrence. The underlying etiology is thought to be based on an exaggerated sympathetic stimulation. CONCLUSION: TLVABS is a considerable differential diagnosis in ACS, especially in postmenopausal women with a preceding stressful event. Data on longterm follow-up is pending and further studies will be necessary to clarify the etiology and reach consensus in acute and longterm management of TLVABS.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
BACKGROUND Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.